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Abstract

The aim of this study was to model internal migration in South Africa using the

2011 Census data. The net-internal migration was modelled in the district munic-

ipalities of South Africa using Ordinary Least Squares (OLS) and Geographically

Weighted Regression (GWR). In this study, the following global and local mod-

elling techniques were used, Gravity, Poisson, Negative Binomial (NB), Gamma,

and GWR model (local model). Poisson and NB failed to fit the migration data,

while the Gamma model managed to fit the data reasonably well. The GWR

model performed better than OLS regression in modelling net-internal migration

in district municipalities of South Africa.

The results from these models revealed that there was a strong relationship be-

tween internal migration and economic variables, as well as living conditions and

demographic variables. The Monte Carlo significance test results showed that the

parameters of the white population vary significantly across space.

The results of the study signal that the differences in social and economic dis-

parities in the district municipalities of South Africa are the drivers of internal

migration.
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Chapter 1

Introduction

1.1 Introduction

Internal migration is generally defined as the movement of people from one place

to another within the same country. Internal migration can be broken down into

people moving between provinces, districts, towns and villages. This study is

based on the 2011 census data. Statistics South Africa (Stats SA) defined internal

migration, as the change in a person’s usual municipality or municipality of resi-

dence during the 10 years period (2001-2011) preceding the collection of census

data in 2001.

The questions below (P-10 to P-11d), are migration questions that were included

in the 2011 census questionnaire.

P-10: Does (name) usually live in this household for at least four nights a week

and has done so for the last six months? OR intends to live in this household for
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at least four nights a week for the next six months?

P-10a: In which province does (name) usually live?

P-10b: In which municipality or magisterial district of usual residence does (name)

usually live?

P-10c: In which city/town does (name) usually live or what is the nearest city/town

P-11: Has (name) been living in this place since October 2001?

P-11a: When did (name) move to this place?

P-11b: In which province did (name) live before moving to this place?

P-11c: In which municipality or magisterial district did (name) live before mov-

ing to this place?

P-11d: In which city/town did (name) live before or what was the nearest city/town?

Questions P-10 to P-11d are used for planning and for measuring internal mi-

gration in South Africa. This subject has been debated by researchers all over

the world, including those in South Africa, because of its relevance to social and

economic development (Pezic, 2009). Internal migration can be explained by

variations in wages and employment opportunities that exist between regions or

sectors (Mulhern and Watson, 2009).

Vargas-Silva (2011) states that not every characteristic of migration is advanta-

geous for developing countries. Migration may enforce a high cost for developing

countries by leaving the country not having the human capital necessary to achieve

endless economic growth. This human capital movement may impose a notable
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economic responsibility for developing countries as migrants take with them the

value of their education, which is often sponsored by a government with few re-

sources.

This study seeks to unpack internal migration using various models in a quest to

uncover information that is not really addressed in reports concerning censuses

and various surveys. This study will focus on people’s movements between dis-

trict municipalities.

South Africa has nine provinces, which are subdivided into 52 district municipal-

ities. According to the 2011 Census, the population of South Africa stands at 51.8

million and out of this, over 2,19 million people are internal migrants 1 2 at the

provincial level, see Table 1.1 3.

Table 1.1: Provincial Migration

Province of
previous
residence

Province of usual residence In-
Migration

WC EC NC FS KZN NW GP MP LP
WC 5158316 40152 10566 5155 9221 5039 50694 4759 3381 318917
EC 170829 6250135 5081 15542 73831 32341 117964 12001 8877 120940
NC 17577 4077 1054841 8559 5708 11478 16019 4202 1907 55412
FS 12644 8155 7103 2524282 8881 24090 74387 10859 5283 92622
KZN 21857 19178 2437 11481 9812129 8655 184337 28904 4719 174228
NW 6013 3085 17000 9917 3882 3146255 103550 8495 14066 196780
GP 74915 40161 9446 31455 55620 75260 10416258 61269 54145 953024
MP 7256 3390 1932 5032 12511 13091 122578 3723843 25299 169981
LP 7826 2742 1847 5481 4574 26826 283495 39492 5088084 117677
Out-
Migration

128967 436466 69527 151402 281568 166008 402271 191089 372283

1In-Migration refers to people moving into one place from another place within a country and
Out-Migration is people moving out of one to another place within a country. WC =Western Cape,
EC =Eastern Cape, NC =Northern Cape, FS =Free State, KZN =KwaZulu-Natal, NW =North
West, GP=Gauteng Province, MP =Mpumalanga and LP=Limpopo.

2Source: Statistics South Africa 2011 Census data
3Table 1.1 excluded 2396838 cases where the province was Outside South Africa, unspecified

and do not know.
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The study of internal migration is not a new research area, researchers have ad-

dressed this issue in other countries such as those in Europe, North America and

China by using a variety of modelling techniques. For instance, Vanderkamp

(1968) used time series analysis (from 1947 to 1966) to study the time pattern of

migration in Canada. Gale, Hubert, Tobler and Golledge (1983) used ten migra-

tion models, such as the Wilson’s entropy model, Quadratic programming solu-

tion, Anova model as well as variations of push-pull models. The aim of their

study was to compare the performance of the models in terms of how well they

represent the migration data.

Silvestre (2005) used econometric models to examine the causes and the effects

of internal migration in Spain for the period 1877-1930. He concluded that, eco-

nomic factors are significant in explaining internal migration in Spain. Fan (2005)

used the gravity model to investigate internal migration in China.

In South Africa on the other hand, there are very few modelling studies undertaken

in order to shed light on internal migration. The only information available on

migration is the administrative data which Stats SA, in collaboration with the

Department of Home Affairs, collects. This however, relates only to international

arrivals and departures.

In this study, the source of data that was used for modelling is the 2011 census,

the main reason being the fact that censuses can provide migration totals at lower

geographical levels such as municipalities and ward levels. However, the census

has one limitation which is the lack of detail regarding why a specific person or a

household decided to migrate to a specific district municipality.
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Besides the modelling approach, this study attempts to use cluster analysis to

characterise internal migrants. This is done by using the K-means clustering al-

gorithm.

1.2 Motivation of the study

There are very few attempts made at utilising models to explore internal migration

in South Africa and there is not much being done in applying models to study

internal migration. Studies done by Bouare (2000-2001) model internal migration

in South Africa at the provincial level. Statistics agencies like Stats SA produce

basic descriptive statistics to explore internal migration. The main motivation of

this study is to describe and advance the use of mathematical modelling tools in

investigating internal migration in South Africa.

The internal migration results can assist the South African government in making

informed decisions about the distribution of government resources, such as hous-

ing, schools, health resources, job creation and the distribution of police stations

in the district municipalities.

Another important motivation of this study is to investigate internal migration at

the district level. Figure 1.1 and Appendix A, show the net-internal migration (the

difference between in-migration and out-migration) at provincial level. Gauteng

and Western Cape Provinces have a positive net internal migration that is increas-

ing between the two censuses. Limpopo, Eastern Cape, Free State, KwaZulu-

Natal, Mpumalanga and Northern Cape have a negative net-internal migration.

The 2011 census show that Mpumalanga had a less outflow than 2001 census.
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North West had an outflow of migrants based on the 2001 census questions, and

an inflow based on the 2011 census questions.

Figure 1.1: Net-Internal Migration by Province

1.3 Variables used in the study

This section defines the variables used in this study.

Table 1.2: Variables relating to district municipalities i (origin) and j (destination)

Variables Definition
Mij Migration flow between district i and j
Dij Distance (travelled by a land transport) between district municipalities i and j
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Table 1.3: Variables relating to a specific district municipality: the subscript of
the variables indicates the district municipality

Variables Definition
pop Population size
poc Coloured Population
poI Indian Population
GDP Gross Domestic Product
CPI Consumer Price Index
ad Adult Population
pod Population density
pob Black Population
pow White Population
avh Average annual household income

There is no data about GDP at the district level. This study used the provincial

GDP values. The provincial GDP data is a proxy for districts. Statistics South

Africa (2012(a)) provides the mid-points for the household income ranges and the

average annual household income in this study is calculated from the mid-points.

Table 1.4: Variables relating to the percentage of households in a specific district
municipality with specific attributes

Variables Definition
ocr Tenure status: Occupied rent free
ofp Tenure status: Owned and fully paid off
Inftrdwell Informal or Traditional dwelling
pwa Access to tap water
nacstvs No access to services
tre Tenure Status (Rentals)

Table 1.5: Variables relating to a rate in a specific district municipality with spe-
cific attributes

Variables Definition
emp Employment rate
ump Unemployment rate
illitrt Illiteracy rate
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1.4 Aims
The main aim of this study is to integrate the use of descriptive analysis with mod-

elling approaches in studying internal migration in South Africa. Moreover, the

findings of this study are anticipated to make a contribution to internal migration

studies in South Africa.

1.5 Objectives
The main objectives of this study are to:

1. Develop a model that explains migration in the district municipalities of

South Africa.

2. Investigate the stationarity of the (β) parameters of the Geographically Weighted

Regression (GWR) model

3. Profile migrants using selected demographic characteristics and household

variables.

1.6 Limitations of the Study
The 2011 census data does not provide detailed information about internal mi-

grants. For instance, it does not give reasons for migrating or the motive for

choosing one district as opposed to the other. In light of this limitation, the study

assumes that, the variables used in our models can explain internal migration.

Fan (2005) observed that provinces in China, with larger Gross Domestic Product

(GDP) per capita had the highest in-migration. In this study we aim to use GDP
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to give an indication of economy activity , but it is only available at provincial

level, not at district municipality level. Another aim of this study is to use the

variable wage but the variable was not measured during the 2011 census and this

study used the Average household income at the district level. This variable was

derived from annual household income at the district level using the mid point

values given by Statistics South Africa, 2012(a) for the income categories.

This study does not take into consideration the issue of temporary migration (it

assumes temporary migration is negligible) between the district municipalities in

South Africa, therefore migration may be underestimated. The migration data is

provided at the Local Municipalities level. As South Africa has 234 local munici-

palities (it was a 234 * 234 matrix), these were collapsed to districts. The objective

of this project was to model migration at the district level. This study had to derive

a 52 * 52 matrix, which consists of district municipalities movements, and all that

was done manually in Microsoft Excel.

1.7 Lay out of the project

This report is organised into five chapters. The first chapter is an introduction

of the internal migration. The second chapter, is the literature review. Chapter

three is the Methodology of the analysis. Chapter four is the analysis of the study.

Chapter five is the conclusions and the recommendations of the study.



Chapter 2

Literature Review

2.1 Introduction

This chapter is divided into six main sections. Section 2.2 reviews the methods

available in literature, section 2.3 and section 2.4 is a review of the theory behind

migration models. Section 2.5 reviews the modelling diagnostics. Section 2.6

reviews the cluster analysis. Section 2.7 concludes the chapter.

2.2 Literature Review

Studies done by Kok and Collinson (2006) and Stats SA in South Africa are de-

scriptive in nature with regards to their analysis on internal migration. There are

however, very few attempts at using models to investigate internal migration. This

is not only an issue in South Africa, but also in other developing countries like

China, where it has been observed that relatively little effort has been made to use
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the modelling approach to study migration (Fan, 2005). The Gravity model, Pois-

son, Negative Binomial (NB) and Geographically Weighted Regression (GWR),

etc., are popular models in migration literature. In this study, the above listed

models will be used to study internal migration in South Africa.

Byrne and Pezic (2004), Pezic (2009), and Islam and Siddiqi (2010) stated that

internal migration has an impact on demographic factors, such as age structure,

sex ratios and population size, etc. Further more, Islam and Siddiqi (2010) stated

that migration changes the distribution of the population both at the place of ori-

gin and the place of destination, which can subsequently affect the economy or

demography of a country positively or negatively. The regions of departure lose

labour force participants while the social and economic infrastructure in regions of

arrival may have challenges keeping up with rapidly growing population (Henry,

Boyle and Lambin, 2003).

Publishing country internal migration statistical estimates and trends is impor-

tant, because such results can assist in rationalising and distributing a country’s

resources. These estimates can also help in explaining and perhaps shed the light

on why certain areas lose population through migration, while others are gaining

(Congdon, 2010).

The causes of internal migration vary from country to country. Kok and Collinson

(2006) stated that the causes of migration are theoretically complex and multilevel

in nature, resulting in these being difficult to determine and being harder to gen-

eralise. However, some studies believe that migration is caused by differences in

socio-economic conditions that can be categorised as either pull or push factors.
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The push factors in this case refer to reasons for leaving one place because of

difficulties encountered, such as food shortage, war, flood, etc., while the pull

factors refer to reasons for moving in to another place because of desirable factors

such as a favourable climate, better food supply, better employment opportunities,

etc.

Chapter 2 of the South African Bill of Rights 21(3) by The Constitution of Re-

public of South Africa (1996) provides for freedom of movement and residence

by stating that, "Every South African citizen has the right to enter, to remain in

and to reside anywhere in the Republic". This bill can affect the budget allocation

of other district municipalities, since as more people migrate to and from some

district municipalities, the demand for essential services such as housing and wa-

ter will vary. Henry, Boyle and Lambin (2003) suggested that places with higher

migration rates cause problems for spatial planning efforts as there is a need for

predicting migration flows.

Vargas-Silva (2013) stated that The Office for Budget Responsibility in UK noted

that higher net migration reduces pressure on government debt over time. This

observation was based on the fact that incoming migrants were assumed to be

more likely to be of working age than the population in general. The author further

states that in the short-term migration increases tax receipts.

In South Africa, Bouare (2000-2001) studied the determinants of internal migra-

tion, using the Extended Gravity model as a modelling technique based on the

1996 census as a source of data. The author noted that, the relative GDP , relative

unemployment, relative number of reported crimes and kinship (the ratio of the

greatest size of one dominant population group in province j to the population
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size in province i) to determine internal migration in South Africa. In addition,

Fan (2005) observed a similar pattern in China, where the GDP and migration

stock (number of people living in a different place than where they were born)

were the most significant factors in explaining internal migration for the period of

1985-2000.

Czaika and De Haas (2013) said that kinship networks and transnational ties

among migrant communities tend to facilitate migration. They further noted that

migration networks lower costs for job searches, housing and child care and can

reduce vulnerability to exploitation and crime. Kinship networks are particularly

strong and effective if their internal composition is characterised by similarities

of language, ethnicity and social class. Pedersen et al (2008) and Mayda (2009)

(as cited in, Czaika and De Haas (2013, page 4) noted "there is evidence that net-

works, cultural and historical links have a robust, and strong positive effect on

migration."

Juarez (2000) studied the economic determinants of the Spanish interregional mi-

gration based on the labour force and concluded that unemployment increases out-

migration. Studies done by Czaika and De Haas (2013) also confirmed that eco-

nomic and labour market factors were major determinants of migration in the UK.

However, Maza and Villaverde (2004) studied interregional migration in Spain

and their study revealed that unemployment does not affect net migration rates.

Vanderkamp (1968) on the other hand observed that unemployment had a signifi-

cant negative effect on the number of migrants between regions in Canada and he

further observed that this relationship is not adequately captured by regional un-

employment differentials. Juarez (2000) further comments that the rate of change
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of relative wages is a significant factor in explaining migration in Spain. Rogers

(1967) observed the same findings in California. Faggian and Royuela (2010),

and Czaika and De Haas (2013) noted that when wages and unemployment rates

differ among regions, people react to these regional differences by migrating to

areas where wages are higher and unemployment rate is lower.

The findings from Bouare (2000-2001), Juarez (2000), Maza and Villaverde (2004)

and Vanderkamp (1968) concerning employment are not surprising because mi-

gration is affected by a variety of factors.

Henry et al (2003) suggested that it is not only the socio-economic variables that

determine the cause of internal migration, but environmental variables are also

significant in explaining internal migration. Cebula and Alexander (2006) ex-

plored internal migration by involving variables such as quality of life and noted

that net-state migration is an increasing function of the warmer temperatures and

a decreasing function of the presence of hazardous waste sites.

Other studies have attempted to model migration by using socio-economic and

demographic variables. For instance, Islam and Siddiqi (2010) identified age, ed-

ucational qualification, occupation (before migration), income (before migration),

and type of family structure (before migration) as having a significant effect on

migration.

2.3 Modelling Techniques: Theoretical review

The type of data encountered in the modelling of internal migration are counts/ net

counts, where net counts are the difference between in and out migration counts.
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Coxe, West and Aiken (2009) defined a count variable as a variable that takes on

discrete values (0, 1, 2, 3, .etc).

Boyle (1995), Bouare (2000-2001), Fan (2005), and Faggian and Royuela (2010)

used counts as a response variable in modelling internal migration. Pezic (2009)

used rates for estimating migrants moving between regions. Nabi (1992) used

net internal migration rates to investigate the dynamics of internal migration in

Bangladesh.

2.3.1 Gravity model

The Gravity model is expressed as

ln(yij) = β0 + β1lnpi + β2lnpj + β3lnDij + εij (2.1)

Where yij is the total migrants from district municipality i to district municipality

j, pi and pj are population sizes at origin and destination respectively, Dij is the

distance between district municipality i and district municipality j. The εij is the

error term which is assumed to be a normally distributed random variable.

Stats SA has no data about distance. The distance can be obtained from Google

Maps (2014) using the Harvesine formula to calculate the distance between dis-

trict municipalities. The Harvesine formula as seen from Veness (2002-2015) is

expressed as

Dij = Rc (2.2)
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where,

c = 2a tan2(
√
a,
√

1− a)

a = sin2(4φ) + cosφ1 cosφ2 sin2

(
4λ
2

)

lat is a latitude (in degrees), lon is a longitude (in degrees) φ is a latitude (in

radians), λ is a longitude (in radians),R is an earth radius (mean radius = 6371km)

and the angles need to be converted to radians, where

R = 6371 in km

φ1 = lat1.toRadians()

φ2 = lat2.toRadians()

4φ = (lat2− lat1).toRadians()

4λ = (lon2− lon1).toRadians()

This is implemented in Google Maps (2014).

The parameters (β′s) of the Gravity model are estimated using the Ordinary Least

Squares (OLS) method as follows,

β̂ =
(
XTX

)−1XTY (2.3)

where the independent observations are the columns of X and the dependent ob-

servations are in the single column vector Y.

This model is widely used in the studies of internal migration and is applied in

economics. Bouare (2000-2001) used a Gravity model to investigate internal mi-
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gration in South Africa. Fan (2005) further noted that this Gravity model, which is

used in many migration studies, performed reasonably well in fitting the migration

flows in China.

Although the Ordinary Least Squares (OLS) regression is popular in internal mi-

gration studies. Coxe, et al (2009) stated there are concerns regarding its use in

modelling a count response variable. They further said the OLS regression can be

used to model a discrete outcome with minimal challenge. Gardner, Mulvey and

Shaw (1995) said when the mean of the response is low1, OLS regression tends to

produce wrong results including biased standard errors.

The assumptions of the OLS regression are related to the residuals of a model.

These assumptions are conditional normality, homoscedasticity (constant vari-

ance) and independence. The assumption of log normality is not acceptable for

count data because of the inequality of the variance in the error terms (Flowerdew

and Aitikin, 1982; and Congdon, 1992).

The use of the logarithmic transformation affects the estimates produced (Flow-

erdew and Aitkin, 1982). They further said that the regression produces estimates

(β-parameters) of the logarithms of the yij , not of the yij’s and the antilogarithms

of these estimates are biased of yij . When heteroskedasticity is observed, esti-

mates produced by using log-linearised models are biased and their distorting the

interpretation of the model (Santos and Tenreyro, 2006). Another challenge arises

from the use of the log transformation when some of the flows are zero. The log

of zero cannot be calculated and in fitting the Gravity model. In this study 0.1

is added to zero flows. According to Santos and Tenreyro (2006) this rule will

1A mean that is greater than 10, it is relatively high (Coxe, et al, 2009).
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lead to inconsistent estimators of the parameters of interest. O’Hara and Kotze

(2010) recommend that a count variable should not be analysed by a simple log-

transform, instead models such as Poisson and Negative Binomial models should

be used.

2.3.2 Poisson model

An alternative model to the Gravity model is the Poisson model. The Poisson

model is preferred in the analysis of modelling count response variables (Flow-

erdew and Amrhein, 1989; and Coxe, et al, 2009). The Poisson model ensures

that the conditional mean of λij is non- negative, by taking the exponent of the

independent variables.

A statistical model for counts is the Poisson model with probability function

Pr =
λyije

−λij

y!
, λij >0, y = 0, 1, 2, 3, · · · (2.4)

where λij=exij
T β is the mean response variable, λij is the flow between district i

and j. The term xij is a vector of predictor variables associated with the origin and

the destination district municipalities, and β is a vector of unknown parameters.

Hilbe (2011, page 33) suggested that the estimation of the parameters (β) be done

by taking the first partial derivative of the Poisson log likelihood function. The

Poisson log likelihood function is given by

L(β; y) =
n∑
i=1

{
y
(
xij

Tβ
)
− exijT β − ln (y!)

}
(2.5)
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Taking the first partial derivative of the Poisson log likelihood function with re-

spect to the parameter β, and equating it to zero, gives;

∂(L (β; y))

∂β
=

n∑
i=1

(
y − exijT β

)
xij

T = 0 (2.6)

Solving equation (2.6) yields a Newton Raphson Maximum likelihood estimate

β̂. Therefore the regression model for the Poisson model is expressed as

ln(λij) = β0 + β1x1ij + β2x2ij + β3x3ij + · · ·+ βlxlij (2.7)

The Poisson regression model is a popular modelling technique in examining mi-

gration flow for different countries, Flowerdew and Amrhein (1989) used this

model in studying migration flow in Canada focusing on the 1985-1986 period.

Boyle (1995) also studied rural in-migration in England and Wales for the period

1980-1981 using Poisson regression.

Besides migration, Poisson regression is used as a modelling technique in other

disciplines such as Ecology. Reynolds and Fenster (2008) used the Poisson re-

gression model to predict the number of visits to a patch 2 of plants in a half

hour duration. In this model the number of visits was the dependent variable and

species was the predictor.

The Poisson distribution has one parameter the mean, which is equal to the vari-

ance. In most practical cases this property does not hold, in some instances the

variance is greater than the mean, when this occurs, we get a phenomenon known

as overdispersion. On the other hand if the mean is greater than the variance,
2each patch = one experimental unit
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underdispersion occurs. Overdispersion is caused by misspecification of the sys-

tematic component of the model. Other issues that can cause overdispersion are

the presence of outliers in the observed data set and an inappropriate link function

for the Poisson model.

Collett (2003) suggests that the modification or omission of outliers may lead to

the residual deviance (defined in equation 2.60) being reduced until the overdis-

persion disappears. Collett (2003) further suggests that the adequacy of the chosen

link function can be checked by studying the Index plot of the standardised de-

viance or likelihood residuals. Miaou (1994), Simonoff (2003) and Hilbe (2011)

presented a statistic that can be used in examining overdispersion for the Poisson

regression model. The statistic is known as the dispersion parameter (Pearson

Goodness-of-fit (χ2) divided by degrees of freedom), that is χ2

n−p , where n − p

is the degrees of freedom, n is the number of observations and p represents the

number of unknown regression parameters in the Poisson model.

A Poisson model having a value of the dispersion parameter greater than 1 is

overdispersed and a model with a value below 1 is underdispersed. When the

Poisson regression is well defined and it fits the data reasonably, the Pearson dis-

persion statistic has a value close to 1. When over dispersion is detected in a

Poisson model, a Negative Binomial model must be considered (Hilbe, 2011).

2.3.3 Negative Binomial (NB) model

The probability distribution of the Negative Binomial model (NB) is given by

f(y, λ, ν) =
Γ(y + ν)

y!Γ(ν)

(
ν

ν + y

)ν (
y

y + ν

)y
(2.8)
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The means are based on the logarithmic link, λ = ex
T β . Unlike in the Poisson

regression model, the NB mean (λ) is not equal to its variance and it is given

as, V ar(y) = λ + αλ2 , where α = 1
ν
. As in the Poisson regression model,

the parameters β and α of the NB regression model are estimated by taking the

partial derivatives of the NB log likelihood with respect to β and α. The NB log

likelihood is given by,

L(β; y, α) =
n∑
i=1

yln

(
αex

T β

1 + exT β

)
− 1

α
ln
(

1 + ex
T β
)

+ ln

[
Γ

(
y +

1

α

)]
− ln

[
Γ

(
y +

1

α

)]
− ln

[
Γ

(
1

α

)]
(2.9)

The normal equations are obtained from

∂L(β, y, α)

∂β
= 0 (2.10)

The solutions for the partial derivatives are provided by Hilbe (2011). Fisher

scoring can also be used to obtain the estimates. A regression equation of the

model with a disturbance term that accounts for the overdispersion is given by

ln(λij) = β0 + β1x1ij + β2x2ij + β3x3ij + · · ·+ βlxlij (2.11)

The NB model is a generalized Poisson model (Cameron and Trivedi, 1986). The

NB regression model is known as a parametric model for overdispersion. The

assumption for this model is that y has a Poisson distribution with the expected

value λij conditional on εij and that eεij follows a standard Gamma distribution.
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The NB model is like a Poisson model in the sense that it can only take non

negative integers. However, it is dissimilar in that it has two parameters, the mean

and the alpha (α) term. The alpha term is an indication of the spread of the data

around the Poisson mean, when it has values greater than 1. However, if the alpha

term is equal to zero then the NB model reverts to the Poisson model.

The NB regression model is not only used to model overdispersion, but has ap-

plications in other research areas such Accident Analysis. Miaou (1994) studied

the performance of Poisson and NB regression models in investigating the re-

lationship between truck accidents and the design of the road section where the

accident occurred. In addition Abdel-Aty and Rwadan (2000) used the NB regres-

sion to model the frequency of accident occurrence. The model has applications

in psychiatric research. Elhai, Calhoun and Ford (2008) used the NB regression

to model the mental health visits count.

The NB regression model has its own drawbacks like any other modelling tool.

Lord (2006) observed that the dispersion parameter of NB models can be biased

when not enough sample are available for estimating the model. The Poisson and

NB models cannot be used to datasets that contained a large number of zeros and

heavy tail that forms highly dispersed data (Geedipally, Lord and Dhavala, 2012).

2.3.4 Gamma model

Another model that can be used to model migration is Gamma regression. This

section starts by defining the probability function and the parameters of the model.

The probability density function of the Gamma distribution is defined as,
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f(x) =
αkxk−1e−αx

Γ(k)
, 0 ≤ x ≤ ∞, α > 0, k > 0, (2.12)

where the α and k parameters represent, the scale and shape parameter respec-

tively. The Maximum Likelihood method can be used to estimate the parameters,

α and k. Γ is known as a Gamma function, mathematically this function is defined

by,

Γ(k) =

∫ ∞
0

αkxk−1e−αx dx (2.13)

The mean (µ) of the Gamma distribution is defined as,

µ =

∫ ∞
0

xf(x)dx

=

∫ ∞
0

x
αkxk−1e−αx

Γ(k)
dx

=
k

α

(2.14)

To calculate the variance (σ2), first we need to derive the formula for the second

moment µ2. Burgin (1975) defined the rth moment µr of the distribution about

the origin as,

µr =

∫ ∞
0

xrf(x)dx

=
Γ(k + r)

αrΓ(k)

(2.15)

Γ(k) for integers is expressed as,

Γ(k) = 1 · 2 · 3 · 4 · · · (k − 1) = (k − 1)! (2.16)
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Therefore, the expression for the second moment µ2, (substitute r =2) is,

µ2 =
Γ(k + 2)

α2Γ(k)

=
(k+)!

α2(k − 1)!

=
(k + 1)(k)(k − 1)(k − 2) · · · 2 · 1

α2(k − 1)(k − 2) · · · 2 · 1

=
(k + 1)(k)

α2

(2.17)

The variance is equal to,

V ar[x] = E[x2]− E[x]2

=
k2 + k

α2
− k2

α2

=
k

α2

(2.18)

Similar to Poisson model, the log link function will be used and the regression

equation of the Gamma model that is used in this study is expressed as,

ln(λij) = β0 + β1x1ij + β2x2ij + β3x3ij + · · ·+ βlxlij (2.19)

The distribution is parsimonious in parameters and, hence, simple to use. An-

other advantage of the Gamma distribution, as noted by Singh, Singh, and Kumar

(2011), is that the distribution has various shapes of hazard function3 for different

values of the shape parameter. The Gamma regression model is not popular in

migration studies, but the model has been applied successfully in financial and

3The hazard function is a conditional density, given that the event in question has not yet
occurred prior to time t.
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the Operational Research area. Milevsky and Posner (1998) used the reciprocal

Gamma distribution density to model the Asian pricing options. Burgin (1975)

used the Gamma distribution to model inventory control. However, the model has

it own disadvantages. Greene (1990) and Singh et al (2011) stated that its distribu-

tion function and survival function cannot be presented in a closed forms. Singh

et al (2011) further noted that, if the shape parameter is an integer, the hazard

function involves the incomplete Gamma function which is difficult to manipu-

late mathematically. Another draw back of the model, is that, zero values for a

response variable is considered unrealistic by this model.

2.4 Local Modelling

This section discuss the Geographically Weighted Regression (GWR), Moran’s I

and the Monte Carlo significance test.

2.4.1 Geographically Weighted Regression (GWR) model

Geographically Weighted Regression (GWR) is an extension of the traditional

regression model. Global models (all the models discussed above) assumed that

the parameters estimated are stationary over a geographical space.

The GWR model allows local variations in these parameters to be estimated. The

model also allows for an investigation of the way in which an explanatory variable

influences changes over a geographical space, rather than simply assuming it has

the same influence at all locations as in the global approach (Byrne and Pezic,

2004).
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The GWR model is given by

yi = β0 (ai, bi) +
∑
j

βj (ai, bi)xij + εi (2.20)

where yi represents the value of the internal migration flow, xij are the explana-

tory variables, (ai, bi) denotes the coordinates of the i-th point in the space and

βj (ai, bi) is the local coefficient for the j explanatory variable at location i. The

estimation of the parameters for the GWR model is similar to that of Weighted

Least Squares (WLS). The exception is that the weights are conditioned on the

location (ai, bi) relative to the other observations in the data set, and hence any

change of location. The expression for the GWR model estimator takes the form

β̂ (ai, bi) =
(
XT w (ai, bi)X

)−1
XTw (ai, bi)Yi (2.21)

where w (aibi) represent a square matrix of weights relative to the position of

(aibi) , X
Tw (aibi)X is the geographically weighted variance-covariance and Yi

is the vector of the response variables. The off diagonal elements of the square

matrix w (aibi) are equal to zero.

w (aibi) =


wi1 . . . 0

... . . . ...

0 . . . win

 (2.22)

wherewin represent the weighting at point n on the model calibration around point

i. These weights vary with i which distinguishes the GWR model from traditional

WLS model where the scaling matrix is constant.
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A global model such as OLS regression is the same as a local model in which

each data point has a unit weight so that there is no spatial variation in the es-

timated parameters (Brunsdon, Fotheringham and Charlton, 1996; and Fother-

ingham, Brunsdon and Charlton, 2000). This suggests that, when the diagonal

elements of w (ai, bi) are equal to one in equation (2.22) then equation (2.21) is

equivalent to an OLS. The parameters of the GWR model change over space. In

this casewij are defined as continuous functions of the dij’s, the distances between

i and j, so that,

wij = e
−dij

2

h2 (2.23)

where h is known as the bandwidth. If i and j coincide, the scaling of the observa-

tion will be unity. The weighting or scaling of other data will decrease according

to a normal curve as the distance between i and j increases. An important step in

fitting the GWR model, is the selection of h which controls the rate at which the

scaling decays.

A large h in the GWR results tends to be informative, approaching the OLS results

as h gets closer to infinity. If h is too small, the GWR parameter estimates will

increase depending on data points in close proximity to i and hence will have

increased variance. The Cross validation (CV ) method assists in choosing the

optimum bandwidth, and is defined as,

CV =
n∑
i=1

(yi − ŷ 6=i)2 (2.24)

where n is the number of observations and ŷ 6=i is the fitted value of yi with the

observations for data point i omitted from the calibration process. More discussion
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on cross validation methodology can be sourced from Brunsdon et al (1996).

Alternatively, the bandwidth (h) may be chosen by minimising the Bias Corrected

Akaike Information Criteria (AICc) score, defined as,

AICc = 2nln(σ̂) + nln(2π) + n

{
n+ tr(M)

n− 2− tr(M)

}
(2.25)

where n is the number of observations, σ̂ is the estimated standard deviation of the

error term, and tr(M) is the trace of the hat matrix M , which is a square matrix.

The spatial weighting function can be implemented equally at each calibration

point. The problem with that is, in some regions, the local regressions fits might

be based on relatively few data points, if the data is sparse. To correct this, an-

other scaling function is included into GWR, it is known as a spatially adaptive

weighting function and is defined by

wij =


(

1−
(
dij
hi

)2)2

, if dij < hi

0, otherwise

(2.26)

The spatially adaptive weighting function excludes points outside radius d, but

tappers the scaling of points inside the radius, such that the weighting wij is a

continuous and once differentiable function for all points less than a distance d

from the centre point.

The GWR model has applications in migration studies, for example Nakaya (2001)

applied it to study migration flows in Japan during the latter half of 1980. The

model is gaining popularity in other areas of study, these include the social sci-
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ences and spatial economic analysis. Cahill and Mulligan (2007) used the GWR

model to study local crime patterns in Portland and Oregon. Kalogirou and Hatzichris-

tos (2007) presented a spatial modelling framework for income estimation in

Athens by using the GWR model as a modelling technique for their study.

2.4.2 Moran’s I

Moran’s I is a global statistic because it estimates the overall degree of spatial

autocorrelation for a data set. The possibility of spatial differences suggests that

the level of autocorrelation may significantly vary across the geospace. Local

spatial autocorrelation statistics give estimates that are expanded to the level of

the spatial analysis units, allowing assessment of the relationship across space.

Moran’s I behaves like a Pearson correlation coefficient. Its value is generally

between -1 and 1, but can sometimes exceed -1 or 1 (Fortin and Legendre, 1989).

Positive values indicate positive autocorrelation and vice versa, but if no spatial

autocorrelation detected then this suggest that the spatial arrangement of the resid-

uals is random. Moran’s I is calculated as follows:

I =
n
∑

i

∑
j wij(zi − z̄)(zj − z̄)∑

i

∑
j wij

∑
i(zi − z̄)2

(2.27)

where I is the Moran coefficient for the distance class d, and n is the number

of spatial units that are labelled by i and j, z is the variable of interest, z̄ is the

average of z, i and j vary from 1 to n, w′ijs take the value 1 when the pair of

location (i, j) pertains to distance d and 0. W is the sum of the w′ijs. The Moran’s

I statistic can be interpreted by the evaluation of the standard normal deviate that
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is computed as

Z =
[I − E(I)]

σ(I)
(2.28)

where E(I) is the expected I , and is defined as,

E(I) =
−1

(n− 1)
(2.29)

and σ(I) is the standard deviation of I , and is defined by,

σ(I) =

√
nv4 − v3v5

(n− 1)(n− 2)(n− 3)(
∑

i

∑
j wij)

2
(2.30)

Where, v1, v2, v3, v4 and v5, are defined as follows,

v1 =
1

2

∑
i

∑
j

(wij + wji)
2 (2.31)

v2 =
∑
i

(∑
j

wij +
∑
j

wji

)2

(2.32)

v3 =
n−1

∑
i(zi − z̄)4

(n−1
∑

i(zi − z̄)2)2
(2.33)

v4 = (n2 − 3n+ 3)v1 − nv2 + 3

(∑
i

∑
j

wij

)2

(2.34)

v5 = v1 − 2nv1 + 6

(∑
i

∑
j

wij

)2

(2.35)

For the hypothesis testing, Moran’s I values are transformed to Z-scores, and
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values that are greater than Z0.025 (1.96) or smaller than −Z0.025 (-1.96) specify

the presence of spatial autocorrelation at the 5% level of significance.

2.4.3 Monte Carlo significance Test

This section presents a method that is used to assess the spatial variability of the

beta (β) parameters of the GWR. The method is in the form of hypothesis testing

as discussed by Brunsdon, Fotheringham and Charlton (1998). The hypothesis

test is formulated as follows,

H0 : βij = βj ∀i, vs Ha : βij not all the same ∀i (2.36)

The statistic that is used to calculate the variability of βij as i varies for a fixed j

vj =
∑
i

(βij − β.j)2

N
(2.37)

where β.j denotes averaging over j. Brunsdon et al (1998) noted that the smaller

the vj the greater the evidence that the coefficient matching vj is fixed. Individual

variables, presented in the hypothesis in equation (2.36) can be investigated if

the null hypothesis of vj were known. From the GWR modelling frame work

this is not so, however the Monte Carlo method offers an alternative approach.

A randomisation test needs to be carried out, under the null hypothesis which

assumes that the beta parameters (βij) do not vary with i for variable j. Brunsdon

et al (1998, page 436) state that "if the GWR model were to be calibrated with

the locations of the data points randomly assigned to the predictor and response

variables, then there should be little difference in the patterns of beta parameters,
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if the beta parameters are fixed over space, then, the spatial location should not

greatly affect their calibration. Using Monte Carlo tests it should be possible

to compare the distribution of the vj under the randomisation hypothesis". The

procedure, for a given j, is as follows.

1. Make a record of vj for the accurately located observed data points.

2. Randomise the locations of the observations.

3. Redo step 2, P -1 times, recording vj at each step.

4. Measure the rank of vj for the correctly specified case, R.

5. The p− value for the randomisation hypothesis is R/P .

2.5 Modelling Diagnostics

This section concentrates on the diagnostic measures that will be used to assess

the assumptions, performance and the strength of the individual models.

2.5.1 Variance Inflation (VIF)

The variance inflation (V IF ) is a diagnostic measure that is used in a linear regres-

sion to check for multicollinearity among explanatory variables. Multicollinearity

suggests that there is a near-linear dependence among the independent variables.

The explanatory variables are the columns of the X matrix. A linear dependence

would result in a singular XTX , or alternatively, the inverse of the matrix XTX

will not exist. Montgomery, Peck and Vining (2006) further explained that, the

presence of multicollinearity can dramatically impact the ability to estimate re-
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gression coefficients. The VIF statistics that will be used to investigate the pres-

ence of multicollinearity, is defined as follows.

V IFl =
1

1−R2
l

(2.38)

Where R2
l is the coefficient of determination obtained from the explanatory re-

gression of independent variable l on the remaining independent variables. In

this study, an explanatory variable with a V IF greater than 6, indicates a multi-

collinearity and meaning such variables are dropped. Alternatively, the variance

inflation factor can be used as a measure of variable redundancy, and the value of

the V IF can help to decide which variables need to be removed from the model

(Rosenshein, Scott, and Pratt, 2011).

2.5.2 Shapiro-Wilk test

Shapiro and Wilk (1965) developed a test known as the Shapiro-Wilk test which

is used to check the assumptions of the linear regression model. This statistical

test is used to investigate if a sample came from a normally distributed population.

The test statistic is

W =

(∑n
i=1 aiy(i)

)2∑n
i=1(yi − ȳ)2

(2.39)

where, y(i) is the ith order statistic, the ith− smallest number in the sample;

ȳ = (y1 + · · ·+ yn)/n (2.40)
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is the sample mean; the constants ai are given by

(ai, · · · , an) =
mTV −1

(mTV −1V −1)
1
2

(2.41)

where

m = (m1, · · · ,mn)T (2.42)

andm1,· · · ,mn are the mean values of the order statistics of the response and iden-

tically distributed random variables which are sampled from the standard Gaus-

sian distribution, and V is the covariance matrix of those order statistics. The

default hypothesis may be rejected if W is below a predetermined threshold. The

default hypothesis in this case is that the population is Gaussian. If the probability

of obtaining a value as extreme as W is smaller than a specified α level, the de-

fault hypothesis is rejected. This means that there is evidence that the data tested

are not from a Gaussian population.

2.5.3 Jarque-Bera-Test (JB-Test)

As in the Shapiro-Wilk test, the Jarque-Bera Test (JB-Test) is used to test the

hypothesis that the distribution of the residuals are normally distributed (Thade-

wald and Buning, 2004). The test depends on the measures of skewness (S) and

kurtosis (K). The JB test is defined by

JB =
n

6

(
S2 +

(K − 3)2

4

)
(2.43)

where the sample skewness
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S =
µ̂3

(µ̂2)
3
2

(2.44)

is an estimator of

b1 =
µ3

(µ2)
3
2

(2.45)

and the sample kurtosis

K =
µ̂4

(µ2)2
(2.46)

an estimator of

k2 =
µ4

(µ2)2
(2.47)

µ2 and µ3 are the theoretical second and third central moments, respectively, with

its estimates

µ̂j =
1

n

n∑
i=1

(xi − x̄)j, j = 2.3, 4... (2.48)

Bowman and Shenton (1975) stated that the JB test is asymptotically chi-squared

distributed with two degrees of freedom because it is just the sum of squares of

two asymptotically independent standard normal distribution. This means H0 has

to be rejected at level α if JB ≥ χ2
α(2).

2.5.4 Durbin-Watson (D-W)

The Durbin-Watson (D-W) is a test statistic that is used to check if there is au-

tocorrelation in the residuals of a regression model. It is important to test for

autocorrelation, because the presence of autocorrelation leads to wrong standard

errors for regression coefficients.
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The D-W test is based on the assumption that errors in a regression model are

generated by first-order autoregressive process observed at equally spaced time

periods, defined by,

εt = ρεt−1 + at (2.49)

where εt is the error term in the model at time period t, at is a normally distributed

independent random variable with zero mean and constant variance, and ρ is a

parameter that defines the relationship between the model errors εt and εt−1. In

the case of the OLS model, testing the presence of autocorrelation is important,

because if it is ignored the model will predict estimates with biased standard er-

rors.

The D-W statistic is defined as,

d =

∑n
t=2(et − et−1)2∑n

t=1 e
2
t

(2.50)

where et, t = 1, 2, · · · , n are the residuals from an OLS regression of yt on xt. For

uncorrelated errors the value of the D-W statistic should be close 2. We present

the set of rules that need to be followed, when deciding whether the assumption

of uncorrelated errors is violated or not as suggested by Montgomery et al (2006).

The formal test of positive first order serial correlation is as follows:

H0 : ρ = 0, there is no autocorrelation

Ha : ρ > 0, there is positive autocorrelation

If the test statistic d < dLα reject H0, while if d > dUα do not reject H0, but if
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dLα < d < dUα the test is inconclusive.

Also the statistic d can be used to test the presence of the negative autocorrelation

as well. To test for the significance of a negative autocorrelation, the test statistic

(4-d) is compared to both the dLα (lower) and dUα (upper) critical values. The

hypothesis is presented as,

H0 : ρ = 0, there is no autocorrelation

Ha : ρ < 0, there is a negative autocorrelation

If (4-d) < dLα , there is a sufficient evidence to support Ha. However, if (4 − d)

< dUα , there is evidence to suggest that there is no negative autocorrelation, and

if 4-dLα < d < 4− dUα , then, the test is inconclusive

2.5.5 Koenker-Breusch Pagan (Koenker-BP) Test

The Koenker (1981) and Breusch Pagan (BP ) (1979) derived the same test statis-

tic that is used to test for Heteroscedasticity in the linear regression model. Unlike

the BP test, Koenker (1981) relaxes the assumption that the error terms are nor-

mally distributed and the test is less sensitive to non-normality of data and small

sample sizes. Also, if the Koenker-BP p− value is small and statistically signifi-

cant, that simply suggests that the relationship varies across the study area and the

parameter estimates are nonstationary (Rosenshein et al, 2011).

The Koenker-BP statistic also known as Koenker’s Studentised Breusch Pagan

statistic is distributed as,

BPKoenker ∼ χ2
m (2.51)

i.e., BPKoenker has a Chi-square distribution with m degrees of freedom.
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2.5.6 Test for significance of linear regression model

The test for significance of regression is a procedure to check if there is a linear

relationship between the response or dependent variable (y) and any of the ex-

planatory variables. This procedure assesses the overall fit of the linear model.

The appropriate hypothesis is,

H0: β1 =β2 =· · ·=βk=0

(None of the variables are useful in predicting the response)

Ha: βj 6= 0 for at least one j

The rejection of the null hypothesis (H0) suggests that at least one of the re-

gressors, x1, x2, · · · , xk contributes significantly to the model. The total sum of

squares SST is partitioned into a sum of squares due to regression, SSR, and a

residual sum of squares, SSRes. Then, the total sum of squares SST is defined as,

SST = SSR + SSRes (2.52)

SSR = β̂TXTy − (
∑n

i=1 yi)
2

n
(2.53)

SSRes = yTy − β̂TXTy (2.54)

SST = yTy − (
∑n

i=1 yi)
2

n
(2.55)

If the null hypothesis is true, then SSR
σ2 follows a χ2

k distribution with the same

number of degrees of freedom as number of regressor variables in the model, and
SSRes
σ2 follows χ2

n−k−1, where SSRes and SSR are independent. The statistic that
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is used to test the overall significance of the linear model is defined as,

F0 =
SSR/k

SSRes/(n− k − 1)
∼ Fk,n−k−1 (2.56)

Table 2.1: Analysis of Variance (ANOVA) for Significance of Regression in Mul-
tiple Regression

Source of Variation Sum of Squares Degrees of freedon Mean Square F0

Regression SSR k MSR MSR/MSRes
Residual SSRes n− k − 1 MSRes

Total SST n− 1

Where n is the number of the observations, yi is the observed values of the re-

sponse variable, ȳ is the, mean of y, and ŷi is the estimated value of y.

2.5.7 Reset Test

In testing the structure of the model we present the artificial model which was

defined as,

ln(yij) = β0 + β1ln(x1) + β2ln(x2) + · · ·+ δ1ln(xn)2 + ηij (2.57)

Where ηij is the random error, and the parameter δ1 is estimated by least squares.

However, the aim is to investigate the significance of the artificial model by testing

a hypothesis,

H0 : δ1 = 0

Ha : δ1 6= 0
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If the p− value from the output of the Reset test, is less than 5% (0.05), we then

reject H0, and conclude that the test has detected misspecification on the model.

2.5.8 Ord plot

Ord (1967) developed a diagnostic plot that can be used to assist in identifying a

discrete model for a count response variable. The author defined a class of discrete

distributions by the difference equation,

4fl−1 = fl − fl−1 =
(a− l)fl−1
l(b1 + b2l)

(2.58)

Where l ≥ 1 and a, b1, b2 are parameters. When b2 =0, we have,

ul =
lfl
fl−1

=
[a+ l(b1 − 1)]

b1
= c0 + c1l (2.59)

Ord (1967) showed that a linear relationship of the form above holds for these

distributions; Poisson, NB and logarithmic series. The slope c1 is zero for the

Poisson, negative for the binomial, positive for the NB and logarithmic series

distributions. The intercept c0 is positive for the following distributions, Poisson,

binomial and NB, and negative for the logarithmic series.

2.5.9 Deviance of the generalised linear models

An alternative global test to F statistics is the deviance, this statistic is more rel-

evant to count models, such as, Poisson, NB and Gamma model. This section

defines the deviance statistic that is used to test the overall fit of generalised linear
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models. The deviance is defined as,

D = 2φ(L(y : y)− L(µ̂ : y)) (2.60)

Where L(µ̂ : y) is the log-likelihood function expressed as the function of the

predicted mean values µ̂ given the response variables, and L(y : y) is the log-

likelihood function computed by replacing µ̂ with y.

The deviance for Poisson, NB and Gamma model, are defined as,

DPoisson = 2
∑(

yiln

(
yi
µ̂i

)
− (yi − µ̂i)

)
(2.61)

DNB = 2
∑(

yiln

(
yi
µ̂i

)
− (yi + α−1)ln

(
yi + α−1

µ̂i + α−1

))
(2.62)

DGamma = 2
∑(

−ln
(
yi
µ̂i

)
+
yi − µ̂i
µ̂i

)
(2.63)

Smaller values of the deviance indicates that the model fits the data better.

2.5.10 Model selection

The Akaike information criterion (AIC) is a measure of the relative quality of a

statistical model, for a given set of data. The AIC is used in the identification

of the best model in a list of the competing models. However, the AIC does not

provide any information about the quality of the models, for instance, if the list of

the competing models fits a particular data set poorly, then the AIC fails to give

any warning about that.

The AIC is based on the maximum likelihood function. According to Mutua
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(1994) the AIC produces fairly good results for n ≥ 30

AIC value is defined as follows,

AIC = 2g − 2ln(L) (2.64)

where g is the number of parameters in the model, and L is the maximised value

of the log likelihood function for the model. In competing models, the model with

the smaller AIC value is preferable. Hence, the AIC incorporates a penalty that

increases with the number of estimated parameters.

The Corrected Akaike Information Criterion (AICc) is the adjustment of theAIC

for known sample sizes:

AICc = AIC +
2g(g + 1)

n− g − 1
(2.65)

Where n is the sample size. Thus, AICc is an AIC with a penalty term. When n

is small or g is large. Hurvich and Tsai (1989) strongly recommend using AICc,

rather than using AIC. AICc tends to AIC for large n. Hurvich and Tsai (1989)

further state that for linear regression, AICc is unbiased, but this fact is based

on the assumption that the candidate family of competing models includes a true

model.

If the AICc values for two models differ by more than 3, this suggest that the

model with the lower AICc is the better one.
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2.6 Cluster Analysis (CA)

Cluster Analysis (CA) is a procedure that is used to divide the data into homoge-

neous groups. The homogeneous groups are known as clusters. The observations

in each cluster are similar and distinct to those in other clusters. Similarity is

measured by estimating the distance (Euclidean, Average Linkage method, etc.)

between the pairs of clusters. However, clusters with small distances between each

other are similar and clusters with larger distances are distinct. Segmentation is

a popular application of the cluster analysis for example, Lee, Lee, Bernhard and

Yoon (2006) used CA to segment the casino gambling market in Korea.

The important step in cluster analysis is to identify variables that are needed for

clustering. A challenging issue is to determine the number of clusters that are

needed from the data set. Matignon (2007) suggested that this can be achieved by

constructing scatter plots and analysing various clustering statistics to determine

the number of clusters.

After identifying certain variables for clustering, the next step is to select the clus-

tering method that will divide the data into homogeneous groups. The most popu-

lar clustering methods are hierarchical methods and partitioning methods. In this

study the k-means clustering method is used.

2.6.1 Cluster Estimation: Silhouette Width

The mean of each observation’s Silhouette value is called a Silhouette Width. The

silhouette width can be used to determine how many clusters a data set has. The

method can also be used as a diagnostic measure. The silhouette value measures
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the extent of one in the cluster allocation of a specific observation. The Silhouette

values near 1 indicates that the observations are well clustered, while value near -1

suggest that the observations are poorly clustered. For data point i, the silhouette

is defined as

S(i) =
bi − ai

max(bi, ai)
(2.66)

where ai is the mean of all observations in the same cluster as data point i, and bi

is the mean of all observation in the nearest neighbouring cluster data point i.

bi = min
Ck∈C C(i)

∑
j∈Ck

dist(i, j)

n(Ck)
(2.67)

where C(i) is the cluster containing observations i, dist(i, j) is the distance (e.g

Euclidean, Manhattan) between observations i and j, and n(C) is the cardinal-

ity of cluster C. The Silhouette Width is between -1 and 1 and should be high

(Rousseeuw, 2008).

2.6.2 The K-means clustering

TheK−means is a clustering method that falls under the category of an unsuper-

vised learning algorithm. This clustering technique attempts to identify relatively

K- different groups based on deliberately selected variables such as demographic

and non demographic variables K −means is applied when one is aware of the

number of clusters that need to be formed in the data.

The following steps are used in the K −means algorithm,

1. Enter the entries that need to be clustered and input K for total number of

clusters to be formed
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2. Randomly select K entries to be the original cluster centers.

3. Allocate each entry to the cluster with the closest mean.

4. Determine the new average of each cluster.

5. Redo step 3

6. Stop when the convergence condition is reached.

Convergence condition suggest that no object form a new cluster. Another condi-

tion, that is frequently used, is to minimise the squared error E of all the objects

in the data set:

E =
k∑
i=1

∑
ε∈Ci

|o− µi|2 (2.68)

Where o is the entry that belongs to cluster Ci, µi is the average of the cluster Ci,

and K is the number of clusters (Mitsa, 2010).

2.7 Summary

The gravity model is used by many authors in migration studies and the model

has a linear structure. The parameters of this model are derived using OLS. When

using the Gravity model, certain conditions need to be verified, such as normality,

constant variation of the error terms and independence. This study uses using

Shapiro-Wilk and JB-Test to assess the normality assumption.

In this study positive numbers are modelled and it was discovered that the as-

sumption of log normality is not acceptable for a count response variable. Another

challenge arises from the use of the log transformation when some of the flows are

zero. The log of zero cannot be calculated and in fitting the Gravity model. It is
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advisable that a count variable should not be analysed by a simple log-transform,

instead models such as Poisson and Negative Binomial models should be used.

The Poisson model is a better alternative model for count response variables. This

model has one parameter (mean) and this model assumes that the mean is equal to

its variance. However, when the assumptions of the Poisson model are violated,

this will lead to biased the standard errors.

When overdispersion occurs the NB in most cases is used to model count vari-

ables alternatively, the Gamma model is used. Both NB and Gamma model are

known as generalised Poisson models. The NB model is only used to account

for overdispersion. This study will consider the use of diagnostic plots such as,

the Ord plot, to investigate if either the Poisson or NB model are suitable for the

modelling the count response variable.

The NB, Gamma, Poisson and the gravity model assume that the parameters es-

timated are stationary over a geographical space. The difference between these

models and GWR, is that the GWR model allows local variations in these param-

eters to be estimated.

In this study cluster analysis is applied with the silhouette width used to estimate

the number of clusters from the data set. The K-means method is used to study

the profile of the data.



Chapter 3

Methodology

3.1 Introduction

This chapter discusses the data set that will be used in the study, including when

the data was collected (time frames) and the methods that were used to collect

the data. The methods used to described and model the data are also described in

detail.

3.2 Data

The study was based on the 2011 census data, collected by Stats SA. The 2011

census counted all the people in the country and collected information about

their ages, education levels, employment, housing conditions and migration status

among others.

South Africa conducted a defacto population census, in which individuals were
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counted at the place where they spent the census night, (on the 9/10 October

2011). The data collection was undertaken by field staff in excess of 160000

over 3 weeks, using face-to-face interviews. The main objective of the census

was to count everyone, but during the counting process some people were missed

(undercount). The undercount for the census 2011 was 14.6 percent for persons

and 14.3 percent for households (Statistics South Africa, 2012(b)).

After the data collection phase, the next phase was data processing. The objective

of data processing was to accurately process census questionnaires (15,821,302

questionnaires) in order to establish a clean, accurate, consistent and reliable

data set. Data processing involved the following stages: process of storage of

boxes, data capturing, editing, tabulation and analysis. The information received

from questionnaires collected during data collection was converted into data rep-

resented by numbers or characters.

Census data are characterised by numerous errors ranging from content to data

processing errors. In order to detect and minimise some of the errors, the au-

tomated error detection and correction method was used based on a predefined

set of editing rules (specifications). The aim of editing the data was to make the

processed data complete and internally consistent, while keeping the number of

changes to a minimum. For the 2011 Census, the editing system used a com-

bination of both logical imputation approaches and hot decks imputation when

inconsistencies were found in the census data (Statistics South Africa, 2012(a)).

The variables used in this study are categorised as follows, demography and eco-

nomic variables, see Section 1.3. From the 2011 census, the migration questions

were available at local municipality level, and in this study we derive the migra-
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tion totals for district municipalities from 234 local municipalities in South Africa.

Statistics South Africa (2012(c)) was used as a data source to extract the GDP

values. Google Maps (2014) was used to capture the distance between district

municipalities.

The objective of this study was to investigate internal migration at the district

level. This implies 52*(52-1) = 2652 different flows or observations from the

migration matrix.

3.3 Description of the data

In this study, the data will be described by using the following description, bar

graphs, tables and maps.

3.4 Modelling

One of the key objectives of this study was to develop a model that explains mi-

gration in the district municipalities of South Africa. According to Fan (2005) the

Gravity model does not take into consideration the effect of uneven regional or

district disparities such as economic development. In order to correct this prob-

lem, as already suggested by the author, additional explanatory variables will be

included into equation (2.1).

The data set consists of 2652 migration flows meaning that the number of obser-

vations are more than the number of parameters. All zero observation in this data

will be increased by 0.1 but only for the Gravity model, to avoid the log(0) which

does not exist, and the R code is given in Appendix D. Therefore, the Gravity



3.4 Modelling 50

model that will be used to estimate parameters for the variables in Section 1.3,

and the model is expressed as follows.

ln(Mij) = β0 + β1ln(popi) + β2ln(popj) + β3ln(podi) + · · ·

+ β4ln(podj) + · · ·+ β40ln(illitrtj) + εij

(3.1)

The explanatory variables are from the district of origin and destination, as in

the gravity model the beta parameters β′s will be estimated by OLS. In section

2.3.1 the assumption of the OLS are discussed, in order to verify whether those

assumption are met, the following will be done, (i) investigate the distribution of

the error terms of this model by running diagnostics plots such as the box plot of

the error terms in R, alternatively, (ii) check whether the residuals are normally

distributed or not, by performing the Shapiro Wilk Test. The test will be done in

R using the package lmtest which was developed by Achim and Torsten (2002).

Section 2.3.1 captured the disadvantage of the gravity model in modelling a count

response variable. Section 2.3.2 highlight various reasons why, the Poisson model

is most suitable for modelling a count variable. Using equation (2.7) the regres-

sion model for the Poisson model is expressed as

ln(Mij) = β0 + β1(popi) + β2(popj) + β3(podi) + · · ·

+ β4(podj) + · · ·+ β40(illitrtj)
(3.2)

From Section 2.3, E(Mij) was defined as the expected value of the migration

flow between districts. The Poisson model assumes that its variance is equal

to the mean. This assumption will be verified by the dispersiontest() function
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in R from AER package, the package was developed by Christian and Achim

(2008). The function tests the hypothesis that the response variable is overdis-

persed against the hypothesis that the response variable is not overdispersed.

If it is discovered that the response variable is overdispersed, then as stated in

Section 2.3.3 the NB and Gamma model will be used. If the response variable

(Mij) is overdispersed. A NB regression model in equation (2.11) that accounts

for overdispersion only is used.

ln(Mij) = β0 + β1(popi) + β2(popj) + β3(podi) + · · ·

+ β4(podj) + · · ·+ β40(illitrtj)
(3.3)

The GWR will be used to model net-internal migration in the district municipal-

ities of South Africa, but before using the GWR model, the OLS model is fitted

first.

Mij = β0 + β1podk + β2trek + β3powk + · · ·+ εij (3.4)

After estimating the OLS model,we then apply the Koenker-BP Test to the residu-

als, if the test is statistically significant, this means that the relationships from the

beta parameters(β′s) vary across space .

The GWR model, from equation (2.20) is expressed as follows

Mij = β0(ai, bi)+β1podk(ai, bi)+β2trek(ai, bi)+β3powk(ai, bi)+· · ·+εij (3.5)

To investigate the significance of the spatial variability of the beta coefficients

from GWR model, the study used the montecarlo.gwr() function in R from the
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package GWmodel. The package was developed by Lu, Harris, Charlton, Bruns-

don, Nakaya, and Gollini (2014). Before applying the test in this study, the data set

will be converted to a spatial data frame using the function SpatialPointsDataFrame()

from the sp package (Pebesma, Bivand, 2005; and Roger, Edzer and Virgilio,

2013).

3.5 Model Estimation
A general description of migration will be given from the tables. Data analysis

for the study will be carried out in R and ArcGIS. In this study the Poisson and

Gamma regression are fitted in R by using the glm() function while glm.nb() is

used to fit NB. These functions are from the MASS package that was developed

by Venables and Ripley (2002). The gravity model is estimated in R, by using the

lm function (from the lmtest package).

The GWR will be estimated in using ArcGIS software that was developed by Esri

(2013). The study used the pam function (sillhouette method) from the cluster

package to estimate the number of clusters from a data set. The package was

developed by Maechler, Rousseeuw, Struyf, Hubert and Hornik (2014). The k −

means algorithm is performed in R. This is done using the clustering function

kmeans(). The function is within the stats package that was developed by R

Core Team (2014).

3.6 Model Performance
The global validation of linear model assumptions function abbreviated as gvlma()

will be used to asses the assumptions of the linear model, this function was devel-
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oped by Pena and State (2006). To examine the significance of the linear model

we will be using the F -statistic (F -Test: is used to test the overall significance of

the linear model). The z statistic or t-test will be used to test the significance of

each beta parameter in the model. The variance inflation factor (V IF ) is used to

investigate multicollinearity between the predictors or independent variables. For

GWR, if the condition number is 30 or above, suggest there is multicollinearity.

Furthermore, the study investigates the presence of the outliers. The R function

outlierTest() from the outliers package by Lukasz (2011) will be used.

For the Poisson, NB and Gamma model, a chi-square test or a deviance is used to

test the significance of the models. In order to check the notion of underdisper-

sion or overdispersion in the Poisson model, the Pearson Goodness-of-fit test is

performed. Underdispersion or overdispersion for the NB and Gamma model are

assessed using the dispersion parameter.

The models are compared by examining the Akaike Information Criterion (AIC)

and Corrected Akaike Information Criterion (AICc). Furthermore the AIC()

from the stats package andACc() function fromAICcmodavg package by Marc

(2014), and these functions are used to calculate theAIC andAICc of the models.

3.7 Summary

This chapter explained the data used for this study, then the methodology that was

used to conduct the 2011 census, etc. The actual models, such as, Gravity, Pois-

son, Negative Binomial (NB), Gamma and Geographically Weighted Regression

(GWR) were also discussed in chapter 2, and the aim of this chapter is to demon-
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strate the application of the models using the 2011 census data. The methods used

to assess the models are described.



Chapter 4

Analysis

4.1 Introduction

This chapter presents the results of the analysis of the methods that were discussed

in chapter 1 and chapter 2, i.e, Gravity, Poisson, NB, and GWR models. Further-

more, in this chapter the codes for the district municipalities are used instead of the

full names for easier presentation in the graphs (for example DC10 is the Cacadu

district municipality). The full names are defined in the Appendix B.

4.2 Description of the data

In this section the data is described by using bar graphs and maps. The distribu-

tion of the migration numbers was left skewed in the district municipalities, as

observed in Figure 4.1. The minimum and maximum value of net-internal migra-

tion variable is -104906 and 232837. The mean of this variable is zero and it is

larger than the median (-422.5). This indicates this variable is positively skewed,
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from Appendix C, in Table C.1 the skewness is 1.38, and the kurtosis is 4.14 and

this value means that the distribution of the net-internal migration is nonnormal

(The kurtosis is 3 for a normal distribution). The CPI (Consumer Price Index)

has a smallest standard deviation, and its value is 0.64 and this suggest that the

observations of this variable are less spread out.

Figure 4.1: Migration distribution in the district municipalities

4.2.1 In-migration, Out-migration and Net-Internal Migration

in KZN district municipalities

Figure 4.2 shows that the following district municipalities (DC) in KZN, DC25

(Amajuba), DC28 (Uthungulu), DC29 (iLembe), and DC22 (Umgungundlovu)

have positive net-internal migration, which is explained by the high number of

in-migration in these district municipalities. DC22 showing highest positive net-

internal migration (more people are moving into this district municipality than
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those going out) while DC27 (Umkhanyakude) has the highest negative net-internal

migration in the KZN Province. The ETH (Ethekwini) metropolitan (metro) has

a lot of movement in and out of the province, however, it has negative net-internal

migration, this means more people are moving out of this metro.

Figure 4.2: In-migration, Out-migration and Net-Internal Migration in KZN dis-
trict municipalities

4.2.2 In-migration, Out-migration and Net-Internal Migration

in EC district municipalities

Figure 4.3 indicates that the majority of the district municipalities, including two

metros, BUF (Buffalo City) and NMA (Nelson Mandela Metropolitan) have neg-

ative net-internal migration, this indicates that more people are migrating out of

the Eastern Cape, and DC 10 (Cacadu) is the only district with the positive net-

internal migration.
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Figure 4.3: In-migration, Out-migration and Net-Internal Migration in EC district
municipalities

4.2.3 In-migration, Out-migration and Net-Internal Migration

in WC district municipalities

Figure 4.4 indicates that all the district municipalities, including the metro (CPT)

having the higher positive net-internal migration, this suggest that the Western

Cape province is a popular destination for internal migrants in South Africa.

Figure 4.4: In-migration, Out-migration and Net-Internal Migration in WC district
municipalities
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4.2.4 In-migration, Out-migration and Net-Internal Migration

in FS district municipalities

Figure 4.5 indicates that, DC20 (Fezile Dabi), and MAN (Mangaung Metropoli-

tan) have the positive net-internal migration, and MAN has the highest net-internal

migration in the Free State, DC18 (Lejweleputswa) has the highest out-migration,

DC18 seems to repeling citizens.

Figure 4.5: In-migration, Out-migration and Net-Internal Migration in FS district
municipalities

4.2.5 In-migration, Out-migration and Net-Internal Migration

in GP district municipalities

Figure 4.6 suggest that, DC42 (Sedibeng) is the only district municipality with

negative net-internal migration in Gauteng. While the TSH (Tshwane Metropoli-

tan Municipality) has the largest net-internal migration in South Africa, this makes

TSH a popular destination to internal migrants. Johannesburg (JHB) almost has

as many people moving in, as are moving out. While EKU (Ekurhuleni) has a

significant number of internal migrants moving in than are moving out.
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Figure 4.6: In-migration, Out-migration and Net-Internal Migration in GP district
municipalities

4.2.6 In-migration, Out-migration and Net-Internal Migration

in MP district municipalities

Figure 4.7 shows that, DC32 (Ehlanzeni) is the only DC in Mpumalanga province

with a negative net-internal migration. While DC30 (Gert Sibande) and DC31

(Nkangala) are attracting more in- migrants than those leaving.

Figure 4.7: In-migration, Out-migration and Net-Internal Migration in MP district
municipalities
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4.2.7 In-migration, Out-migration and Net-Internal Migration

in LP district municipalities

Figure 4.8 reveals that, DC36 (Waterberg) is the only DC in Limpopo province

with a positive net-internal migration. While DC35 (Capricorn) has the highest

negative net-internal migration.

Figure 4.8: In-migration, Out-migration and Net-Internal Migration in LP district
municipalities

4.2.8 In-migration, Out-migration and Net-Internal Migration

in NW district municipalities

Figure 4.9 shows that only two DC’s in North West province with the negative net-

internal migration, namely DC38 (Ngaka Modiri Molema) and DC39 (Dr Ruth

Segomotsi Mompati). DC37 (Bojanala) and DC40 (Dr Kenneth Kaunda) have the

positive net-internal migration, people are migrating into these districts in North

West.
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Figure 4.9: In-migration, Out-migration and Net-Internal Migration in NW dis-
trict municipalities

4.2.9 In-migration, Out-migration and Net-Internal Migration

in NC district municipalities

Figure 4.10 Shows DC8 (Siyanda) being the only district municipality in North-

ern Cape province with the positive net-internal migration, and the rest have the

negative net-internal migration, this implies that, the out migration is higher in

those district municipalities.

Figure 4.10: In-migration, Out-migration and Net-Internal Migration in NC dis-
trict municipalities
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4.3 Migration patterns
In this section migration patterns are presented and a review of the district with

highest net-internal migration, and those with the lowest net-internal migration.

During the 2011 census, the following had the highest net-internal migration TSH

(Tshwane), EKU (Ekurhuleni) and CPT (City Of Cape Town metro). The DC15

(O.R Tambo), NMA (Nelson Mandela Bay Metropolitan) and DC35 Capricorn,

had the lowest net-internal migration.

4.3.1 In-migration to Tshwane Metropolitan Municipality (TSH)

During the 2011 Census, the bulk of the migrants that were in Tshwane, were

coming from Limpopo district, DC35 and Ekurhuleni Metro (Figure 4.11).

Figure 4.11: In-migration in Tshwane Metropolitan municipality



4.3 Migration patterns 64

4.3.2 In-migration to Ekurhuleni Metropolitan Municipality

(EKU)

The bulk of the migrants to Ekurhuleni, were coming from JHB, DC35, ETH,

NMA and CPT metro (Figure 4.12).

Figure 4.12: In-migration in Ekurhuleni Metropolitan municipality
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4.3.3 In-migration to the City of Cape Town (CPT)

Figure 4.13 Shows that, most of the migrants to the City of Cape Town, were

coming from JHB metro and Eastern Cape districts, namely, DC12 (Amathole),

DC15 and NMA metro.

Figure 4.13: In-migration in the City of Cape Town Metropolitan municipality

4.3.4 Out-migration from O.R Tambo (DC15)

Figure 4.14 reveals that the migrants from O.R. Tambo moved to CPT, ETH,

DC37, TSH and JHB. However, district municipalities in these provinces, such

as Northern Cape, Limpopo and Mpumalanga were not attracting many migrants

from DC15.
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Figure 4.14: Out-migration in O.R Tambo District Municipality

4.3.5 Out-migration from Nelson Mandela Metropolitan Mu-

nicipality (NMA)

Figure 4.15 shows that the bulk of the migrants from NMA , moved to CPT , BUF,

DC10 (Cacadu) , JHB and ETH . The Northern Cape, Limpopo and Mpumalanga

district municipalities were not attracting many migrants from NMA and DC15

as shown in Figure 4.14.
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Figure 4.15: Out-migration in Nelson Mandela Metropolitan municipality(NMA)

4.3.6 Out-migration from Capricorn (DC35)

Figure 4.16 indicates that large numbers of the migrants from Capricorn district

municipality migrated to TSH, EKU, JHB, DC47 (Greater Sekhukhune), DC36

and DC37. This indicates that the migrants from Capricorn municipality, migrate,

between three provinces, Gauteng, Limpopo and North West. Another observa-

tion from the map was that, the migrants from Capricorn, they turn to migrate to

near proximity district municipalities.
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Figure 4.16: Out-migration from Capricorn District municipality

4.4 Modelling Results

This section presents the results of the models, as described in chapter 2. The

following models, Gravity, Extended Gravity and Nonlinear Gravity, Poisson, NB,

Gamma and GWR model. This section present the results, as well as diagnostic

plots for the models to test of the model assumptions. The model performance

will also be investigated.

The definition of the variables that are used for a Gravity model are shown in

Table 4.1.
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Table 4.1: Variables used for the Gravity model

Variables Definition
Mij Migration flow between district i and j
Dij Distance between district municipalities i and j
popi Population size at the origin i
popj Population size at the destination j

4.4.1 Gravity model

This section presents the results of the Gravity model as defined in equation (2.1).

The population at the district of origin (popi) and the population at the destination

(popj) coefficients are positive, this means an increase in either of the populations

results in an increase in, both the in-or out-migration. While an increase in the

distance (Dij) between district municipalities decrease the in-or out-migration.

The distance coefficient in both in- and out-migration is negative, this tells us that

a 1 unit increase in the distance between the two district municipalities, decreases

migration by e−1.43 in Table 4.2 which is approximate to 0.24. These results sug-

gest a similar pattern to that observed by Millington (2000). According to Henry

et al (2003) and Fan (2005) this relationship agrees with theory, or this is the ex-

pected relationship. The Gravity models that predict, in- and out-migration were

found significant, F (3, 2648) = 1202, p− value = 2.2e−16, and F (3,2648) =1216,

p − value = 2.2e−16, respectively. The Gravity model explains close to 60% of

the observed variation in migration, and there is no evidence of multicollinearity.

All the V IF ’s for the independent variables are less than 6. The predictors are

significant at the 5% level.

It was also observed that the beta parameters for the populations were less than

1. According to Flowerdew and Amrhein (1989) when this happens both in-and
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out-migration become less likely for larger cities.

Table 4.2: Results of the Gravity model

Independent variables
In-migration Out-migration

Estimate SE pvalue VIF Estimate SE p-value VIF
intercept -9.00 0.67 < 2e−16 -9.05 0.66 < 2e−16

ln(Dij) -1.43 0.04 < 2e−16 1.03 -1.43 0.04 < 2e−16 1.03
ln(popi) 0.85 0.03 < 2e−16 1.02 0.91 0.03 < 2e−16 1.02
ln(popj) 0.91 0.03 < 2e−16 1.02 0.85 0.03 < 2e−16 1.02

4.4.2 Extended Gravity model

This section presents, the variables used in Table 4.3 and the results of the Ex-

tended Gravity model.

Table 4.3: Variables used for the Extended Gravity model

Variables Definition
Dij Distance between district municipalities i and j
ocr Tenure status:Occupied rent free)
ofp Tenure status :Owned and fully paid off
poc Coloured Population
poI Indian Population
emp Employment rate
GDP Gross Domestic Product
CPI Consumer Price Index
ad Adult Population
pwa Access to tap water
Inftrdwell Informal or Traditional dwelling

At 5% level, in-migration in the districts was found to be linearly related to 21

significant variables (pull factors). The following variables, ln(obpj), ln(poci),

ln(pocj), ln(empi), ln(CPIj), ln(adi), ln(adj) and ln(Infrdwelli) were positive

related with in-migration. This indicates that an increase in ln(CPIj) increase

the in-migration by e1.34. The out-migration was found to be related to 20 signifi-

cant factors (push factors), and seven of these factors, ln(obpi), ln(poci), ln(pocj),

ln(empj), ln(CPIi), ln(adi) and ln(adj) were positively related to out-migration.
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Furthermore, the following demographic variables, ln(poci), ln(pocj), ln(adi) and

ln(adj) shows the positive relationship with both in- and out-migration in Table

4.4.

The Extended Gravity models that predict, in- and out-migration were found sig-

nificant, F (21, 2630) = 483.8, p − value = 2.2e−16, and F (20,2631) = 512.9,

p−value = 2.2e−16, respectively. The adjustedR2 (R2
adj) of the Extended Gravity

model for both in- and out-migration was 79.3% and 79.4%, respectively, and it

was higher compared to the R2 of the simple Gravity model.

The results suggests that the coefficient of the distance variable was negative, this

showed that migration was less likely as distance between two district munici-

palities increases. The coefficient of the log of the employment rate at the origin

suggest that, the employment rate was positively related with in-migration, and

employment rate at the destination was positively related with out-migration. Sur-

prisingly the log of the GDP at the destination and origin were negative related

with in-and out-migration. However, this observation contradicts with the findings

of (Fan, 2005), who noted that, if migrants moved from the less developed to more

developed provinces, then the beta coefficient of the log of the GDPi (GDP at the

origin) is expected to be negative, and the beta coefficient of the log of the GDPj

(destination) is expected to be positive. This could be the effect of averaging out

since the province GDP was used as a proxy.
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Table 4.4: Results of the Extended Gravity model

Independent variables
In-migration Out-migration

Estimate SE p-value Estimate SE p-value
intercept 27.91 3.16 < 2e−16 27.89 3.15 < 2e−16

ln(Dij) -1.71 0.03 < 2e−16 -1.69 0.03 < 2e−16

ln(obpi) -0.51 0.08 1.85e−09 0.45 0.08 4.03e−09

ln(obpj) 0.41 0.08 1.11e−07 -0.48 0.08 1.52e−08

ln(ocri) -0.77 0.11 3.24e−11

ln(ofpi) -1.71 0.17 < 2e−16 -0.61 0.13 4.53e−06

ln(ofpj) -0.63 0.13 2.67e−06 -1.75 0.16 < 2e−16

ln(poci) 0.19 0.02 < 2e−16 0.17 0.02 < 2e−16

ln(pocj) 0.18 0.02 < 2e−16 0.18 0.02 < 2e−16

ln(poIi) -0.06 0.02 8.44e−03 -0.06 0.02 6.98e−03

ln(poIj) -0.07 0.02 1.08e−03 -0.05 0.02 0.01
ln(empi) 0.89 0.07 < 2e−16 -0.30 0.07 1.51e−05

ln(empj) -0.31 0.07 0.84 1.87e−05 0.07 < 2e−16

ln(GDPi) -0.30 0.05 4.54e−11 -0.31 0.05 4.28e−11

ln(GDPj) -0.30 0.05 5.37e−10 -0.28 0.04 3.42e−10

ln(CPIi) -1.97 0.29 1.71e−11 1.28 0.29 1.23e−05

ln(CPIj) 1.34 0.29 5.08e−06 -1.70 0.27 4.34e−10

ln(adi) 0.84 0.04 < 2e−16 1.18 0.04 < 2e−16

ln(adj) 1.20 0.04 < 2e−16 0.85 0.03 < 2e−16

ln(pwaj) -1.92 0.18 < 2e−16

ln(Inftrdwelli) 0.08 0.04 0.029 -0.29 0.04 2.93e−14

ln(Inftrdwellj) -0.27 0.04 1.12e−11

ln(pwai) -1.95 0.18 < 2e−16

ln(ocrj) -0.79 0.11 1.73e−12

F 493.80 512.90
R2 0.793 0.794

4.4.3 Results: Reset Test

In Table 4.4 the sign of the GDP parameters is incorrect from the results of the

Extended Gravity model. This can be attributed to the fact that GDP is a proxy

and the provincial figure are distorting the statistics. In this regard, the study

presents the Reset Test results to investigate the model adequacy of the Extended

Gravity regression. The Reset Test results, in Appendix E from the R, function

resettestwas used, the results suggest that the parameter δ1 was significant at 5%,

because the p−value < 2.2e−16 and it was less than the level of significance, 5%,

thus it was concluded that the Extended Gravity model was misspecified.
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4.4.4 Nonlinear model

The significance of the beta parameters for quadratic terms in Table 4.5 suggests a

nonlinear relationship. Quadratic terms [lnDij]
2
c , [ln(poIci)]

2
c and [ln(adcj)]

2
c have

negative beta values and the rest of the quadratic terms have significant positive

values. Ganzach (1997) said a significant negative beta parameter of a square

predictor in a regression model indicates a concave and a significantly positive

value suggests a convex relationship. From the results, the distance effect is -

0.19[lnDij]
2
c -1.87[ln(Dij)]c. Let d = [ln(Dij)]c, so that the equation is -0.19d2

-1.87d, and has a maximum at,

∂ln(Min)

∂d
= 0

−0.38d− 1.87 = 0

d = −4.92

(4.1)

Note that d =[ln(Dij)]c, and [ln(Dij)]c = -4.92. The variable [ln(Dij)]c is cen-

tered, and therefore [ln(Dij)]c is equal to ln(Dij)-ln(Dij), and the mean (ln(Dij))

is given as 6.54 in Table C.2. So the distance effect increases in-migration as

one travels to around e−4.92+6.54 = 5.05km, which is approximately equal to 5km

but then it is expected to decrease in-migration (Min) as one continues to move

further. However, this value is outside the range of the observed values, and the

lowest distance value is 44km from Appendix C in Table C.1. This supports the

fact that as the distance increase in-migration decreases. The signs of the main

effects in Table 4.5 compare to those in Table 4.4 did not change. Except the sign

for the log of the variable Indian/Asian population at the origin (ln(poIi)), the
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sign change in Table 4.5, and the variable [ln(Inftrdwellj)]c was not significant.

The model was found significant, F (24, 2627) = 434 and p − value = 2.2e−16.

The R2 of the nonlinear model was 0.7969 close to 0.8 (80%) suggesting it is a

good fit. The main effect of the quadratic term ([ln(poIj)]
2
c), namely, [ln(poIj)]c

in Table 4.5 changes sign as compared to Table 4.4 but it is not significant. The

V IF ’s were less than 6 this suggests that there was no serious presence of multi-

collinearity among the predictors. The model that predicts out-migration (Mout)

in Table 4.5 also had significant quadratic terms. Furthermore, the coefficient of

the linear term for the log of employment rate at the destination ([ln(empj)]c) was

positively related to out-migration and its quadratic term was also positive. From

this expression, 1.07[ln(empj)]
2
c + 1.39[ln(empj)]c, Let [ln(empj)]c =w, so that

1.07w2 + 1.39w. This means that the out-migration has minimum at,

∂ ln(Mout)

∂w
= 0

2.14w + 1.39 = 0

w = −0.65

(4.2)

substitute, [ln(empj)]c =w = -0.65, then empj =e−0.65+3.45 =16.44. This indicates

that the employment rate at the destination decreases out-migration at 16.44%,

and after that value in-migration increase. The model was found significant, F (24,

2627) = 445 and p− value = 2.2e−16. The R2 of the nonlinear model was 0.8008

(80.08%) suggesting its a good fit.
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Table 4.5: Results of the Nonlinear model

Independent variables
In-migration Out-migration

Estimate SE p-value VIF Estimate SE p-value VIF
intercept 4.91 0.05 < 2e−16 4.97 0.05 < 2e−16

[ln(Dij)]c -1.87 0.04 < 2e−16 1.73 -1.81 0.04 < 2e−16 1.78
[ln(obpi)]c -0.31 0.08 5.88e−05 3.60 0.47 0.08 6.57e−10 3.45
[ln(obpj)]c 0.41 0.08 1.29e−07 3.52
[ln(ocri)]c -0.19 0.09 0.04 1.80
[ln(ocrj)]c -0.37 0.11 6.33e−04 2.45
[ln(ofpj)]c -0.78 0.17 7.61e−06 5.16
[ln(poci)]c 0.2 0.02 < 2e−16 3.45 0.14 0.02 < 2e−16 2.91
[ln(pocj)]c 0.15 0.02 < 2e−16 3.01 0.14 0.02 < 2e−16 3.04
[ln(poIi)]c 0.11 0.03 1.80e−05 5.59 -0.16 0.03 1.21e−10 5.54
[ln(poIj)]c -0.17 0.03 2.25e−11 5.71 12.25e−04 0.02 0.96 5.31
[ln(empi)]c 1.58 0.08 < 2e−16 3.26 -0.53 0.07 6.18e−15 2.36
[ln(empj)]c -0.52 0.07 1.58e−13 2.50 1.39 0.10 < 2e−16 5.50
[ln(GDPi)]c -0.15 0.05 1.24e−03 3.67 -0.36 0.04 < 2e−16 2.38
[ln(GDPj)]c -0.35 0.04 < 2e−16 2.38 -0.30 0.04 2.47e−11 3.63
[ln(CPIi)]c -1.15 0.27 2.00e−05 2.51
[ln(CPIj)]c -1.34 0.27 8.21e−07 2.59
[ln(adi)]c 0.73 0.04 < 2e−16 3.05 1.31 0.04 < 2e−16 3.02
[ln(adj)]c 1.31 0.04 < 2e−16 3.06 0.84 0.03 < 2e−16 2.68
[ln(Inftrdwelli)]c -0.03 0.04 0.36 1.93
[ln(Inftrdwellj)]c −24.17e−04 0.04 0.94 1.99
[ln(Dij)]

2
c -0.19 0.04 1.33e−07 1.57 -0.18 0.03 2.18e−07 1.58

[ln(poci)]
2
c 0.06 60.50e−04 < 2e−16 1.61

[ln(pocj)]
2
c 0.06 61.03e−04 < 2e−16 1.60

[ln(poIi)]
2
c -0.03 58.27e−04 2.47e−08 1.90 0.05 76.88e−04 4.96e−11 3.38

[ln(poIj)]
2
c 0.05 77.90e−04 5.562e−11 3.39 -0.03 55.56e−04 2.65e−06 1.75

[ln(empi)]
2
c 1.64 0.19 < 2e−16 2.46

[ln(empj)]
2
c 1.07 0.22 1.29e−06 3.51

[ln(GDPi)]
2
c 0.39 0.03 < 2e−16 1.85

[ln(GDPj]
2
c 0.38 0.03 < 2e−16 1.83

[ln(adi)]
2
c -0.34 0.04 < 2e−16 5.11

[ln(adj)]
2
c -0.33 0.04 < 2e−16 5.00

[ln(Inftrdwelli)]
2
c 0.38 0.04 < 2e−16 2.88

[ln(Inftrdwellj)]
2
c 0.36 0.04 < 2e−16 2.88

F 434 445
R2 0.7969 0.8006

4.4.5 Comparison of the models that Predict Out-migration

This section compares the models that were fitted for out-migration. The purpose

of this comparison was to identify the best performing model. The models are

Gravity, Extended Gravity and Nonlinear models, respectively.

In Table 4.6, list the values ofAIC andR2, and suggests that the Non linear model
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was the best performing among the fitted models, as it had a lower AIC and the

highest R2.

Table 4.6: Results of the model selection for Out-migration

Models AIC R2

Gravity model 8637.973 0.579
Extended gravity model 6756.633 0.794
Nonlinear model 6673.679 0.801

4.4.6 Comparison of the models that Predict In-migration

This section compares the models that were fitted for the prediction of in-migration

in the district municipalities of South Africa. The purpose of this section was to

identify the best model that describes in-migration.

According to the results in Table 4.7 the Nonlinear model was the best performing

among the model. Because it had a lower AIC and the highest R2. Although this

difference is only slight.

Table 4.7: Results of the model selection for In-migration

Models AIC R2

Gravity model 8664.183 0.576
Extended gravity model 6785.451 0.793
Nonlinear model 6734.491 0.797

4.4.7 Diagnostic plots of the OLS models

This section presents the diagnostic plots of the models, plots of the residuals

against the fitted values, normal probability, residuals against the fitted values and

residuals against leverage. The plots, shown in Figure 4.17 and Figure 4.18,

suggests that the residuals were distributed around zero and there was no pattern



4.4 Modelling Results 77

between the residuals and fitted values. Montgomery et al (2006) indicated that

if the residuals showed no patterns then the model may be adequate. On this

basis, this study concluded that there were no model defects. However, there were

few non influential outliers and the normality probability plot indicates that there

could be slight normality problems, because some observations were deviating

away from the straight line especially in the out-migration model.

Figure 4.17: Diagnostic: Nonlinear model (In-migration)

Figure 4.18: Diagnostic: Nonlinear model (Out-migration)
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4.4.8 Normality Assessment

From the model selection results, it was concluded that Nonlinear model was the

best performing model. This section test the normality assumption in nonlinear

model.

H0: the residuals of Nonlinear model are normally distributed.

Ha: the residuals of Nonlinear model are not normally distributed.

The JB and Shapiro-Wilk normality Test, at 5 % level of significance, the results

in Table 4.8 suggests that the residuals of the models were not normal and this

indicates that the models were biased and the predictions from these models are

not reliable.

Table 4.8: Results of the normality test

Models
Shapiro-Wilk normality Test Jarque Bera Test

W p− value X2 p− value
Nonlinearin−migration 0.9823 < 2.2e−16 468.8199 < 2.2e−16

Nonlinearout−migration 0.9814 < 2.2e−16 502.0778 < 2.2e−16

4.4.9 Testing for Autocorrelation

To prove that the error terms of the models were uncorrelated or independent,

the Durbin-Watson (D-W) test statistic was used. The D-W statistic using the

durbinWatsonTest() function in R. The following hypothesis test;

H0: ρ = 0 or the error terms of the Nonlinear model are independently

normally distributed.

Ha: ρ 6= 0 or the error terms of the Nonlinear model follows the first-order

autoregressive process.
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Table 4.9, shows that at 5%, ρ parameter was different from zero, because d =

1.448194 ≤ dL= 1.554. From these results, the null hypothesis was rejected and

conclude that the error terms of the model (NonlinearIn−migration) are positively

autocorrelated, the same was observed with the NonlinearOut−migration model.

Table 4.9: Results of the Autocorrelation test

Models lag Autocorrelation D −WStatistic p− value
NonlinearIn−migration 1 0.2758861 1.448194 0
NonlinearOut−migration 1 0.4243746 1.15095 0

4.4.10 Outlier Identification for OLS model

This section presents the results obtained from the Bonferonni method, which was

used to identify the presence of outliers from the Nonlinear models (for both In-

and Out-migration).

The results suggest that there were outliers in the model in Table 4.10 and Table

4.11. In the case of the Nonlinear model that predicts in-migration, the follow-

ing observations, were significant outliers, 1066, 1367, 1371, 1374 and 1386, and

for out-migration, these observation were significant outliers, 435, 1427, 2118,

2322, 2367 and 2475. The observations 1367, 1371 and 1374, represents the in-

migrants from Zululand in Namakwa, John Taolo Gaentswe and Overberg district

municipality in Table 4.10. Also the data point 1066, represent in-migrants from

Uthukela that were reported in West Coast district municipality, and the observa-

tion 1386 represents the in-migrants from iLembe that were in Xhariep district

municipality .

In Table 4.11 the unsual points or outliers correspond to 2118, 2322, and 2475
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suggest that they were 22, 2, and 30 out-migrants from Zululand that moved to

Namakwa, John Taolo Gaentswe and Overberg district municipality. There were

145 out-migrants from Uthukela that moved to West Coast district municipality.

From iLembe they were 22 out-migrants that were reported in Xhariep district

municipality. They were no out-migrants from Central karoo to iLembe district

municipality. The result suggest that there is no chance that the population in Cen-

tral Karoo migrates to iLembe district municipality. This is understood because

the distance between iLembe and Central karoo district municipalities is around

1298 km. From the Nonlinear model results, this study noted that if the distance

between district municipalities is above 5.05km then in-migration is expected to

be less likely between those districts.

This study further investigated the effect of the outliers by removing the outliers

and refitting the models. It was noted that the change in values of the diagnos-

tics statistics such as, R2 and AIC for these Nonlinear models that predicts in-

migration and out-migration, the R2 changed from 0.7968 to 0.8016, and 0.8008

to 0.806, respectively and, the AIC values decreased to 6580.254 and 6493.873

when the outliers were removed. After the outliers were removed the results in

Table 4.12 and Table 4.13 indicates that there is positive autocorrelation and the

residuals for the Nonlinear models failed the normality test.

Table 4.10: Results of the outlier identification: In-migration

Outlier observation rstudent unadjusted p-value Bonferonni p
1386 -5.797154 7.5511e−9 2.0026e−05

1066 -5.549333 3.1545e−08 8.3656e−05

1367 -5.371076 8.5131e−08 2.2577e−04

1371 -5.334528 1.0396e−07 2.7571e−04

1374 -4.492200 7.3539e−06 1.9503e−02
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Table 4.11: Results of the outlier identification: Out-migration

Outlier observation rstudent unadjusted p-value Bonferonni p
2118 -5.614844 2.1738e−08 5.7649e−05

435 -5.510930 3.9166e−08 1.0387e−04

2322 -5.473942 4.8179e−08 1.2777e−04

2367 -5.435374 5.9711e−08 1.5835e−04

1427 -4.683809 2.9593e−06 7.8480e−03

2475 -4.581270 4.8374e−06 1.2829e−02

Table 4.12: Outliers removed: the normality test

Models
Shapiro-Wilk normality Test Jarque Bera Test

W p− value X2 p− value
NonlinearIn−migration 0.9923 1.255e−10 100.9858 < 2.2e−16

NonlinearOut−migration 0.9928 3.264e−10 93.0686 < 2.2e−16

Table 4.13: Outliers removed: the autocorrelation test

Models lag Autocorrelation D −WStatistic p− value
NonlinearIn−migration 1 0.2795935 1.440786 0
NonlinearOut−migration 1 0.457688 1.0843 0

4.4.11 Poisson model results

The Poisson model was fitted to the data and the results displayed in Table 4.14.

The deviance p − value is almost zero for both models this shows that model

failed to fit the data.
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Table 4.14: Results of the Poisson model

Independent variables
In- migration Out-migration

Estimate SE p-value Estimate SE p-value
intercept 6.33 2.34e−02 < 2e−16 7.43 2.25e−02 < 2e−16

Dij −2.49e−03 1.91e−06 < 2e−16 −2.40e−03 1.90e−06 < 2e−16

obpi 4.52e−03 3.53e−04 < 2e−16 0.04 2.96e−04 < 2e−16

obpj 0.03 2.95e−04 < 2e−16 6.39e−03 3.36e−04 < 2e−16

ocri −2.78e−02 2.62e−04 < 2e−16

ofpi −1.80e−02 1.63e−04 < 2e−16 −8.55e−03 1.23e−04 < 2e−16

ofpj −2.96e−03 1.23e−04 < 2e−16 −2.22e−02 1.61e−04 < 2e−16

poci 1.69e−07 3.23e−09 < 2e−16 −3.69e−07 3.54e−09 < 2e−16

pocj −2.65e−07 3.51e−9 < 2e−16 1.48e−7 3.20e−9 < 2e−16

poIi −1.69e−06 7.14e−09 < 2e−16 −8.81e−07 6.53e−09 < 2e−16

poIj −7.97e−07 6.54e−09 < 2e−16 −1.60e−06 7.17e−09 < 2e−16

empi 2.39e−02 1.32e−04 < 2e−16 −3.77e−02 9.05e−05 < 2e−16

empj −3.29e−02 9.56e−05 < 2e−16 2.40e−02 1.17e−04 < 2e−16

GDPi −2.47e−13 4.36e−15 < 2e−16 −3.05e−13 4.73e−15 < 2e−16

GDPj −2.13e−13 4.64e−15 < 2e−16 −2.65e−13 4.32e−15 < 2e−16

CPIi 1.46e−01 9.79e−04 < 2e−16 2.59e−01 1.14e−03 < 2e−16

CPIj 2.81e−01 1.12e−03 < 2e−16 1.18e−01 9.77e−04 < 2e−16

adi 1.36e−05 2.21e−08 < 2e−16 2.01e−05 2.37e−08 < 2e−16

adj 1.96e−05 2.35e−08 < 2e−16 1.28e−05 2.23e−08 < 2e−16

pwaj −1.05e−02 9.38e−05 < 2e−16

Inftrdwelli 6.23e−03 7.62e−05 < 2e−16 −1.54e−02 7.90e−05 < 2e−16

Inftrdwellj −1.23e−02 7.87e−05 < 2e−16

ocrj −3.13e−02 2.48e−04 < 2e−16

pwai −1.09e−02 9.28e−05 < 2e−16

degrees of freedom 2630 2631
Deviance 2550636 2233367
Goodness-of-fit 0 0

4.4.12 Overdispersion Test results

This section investigates whether the Poisson model was either over or underdis-

persed, in a form of hypothesis,

H0: dispersion parameter of the Poisson model is not greater than 1.

Ha: dispersion parameter of the Poisson model is greater than 1.

Table 4.15 indicates that at 5% level of significance, the dispersion parameters

were greater than 1. The dispersion parameters for the models were 1216.875 and

1586.846. This observation further highlights that the Poisson models were over

dispersed, that means that the standard errors of the models were not reliable.
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From the goodness of fit, it was observed that the Poisson model failed to fit the

data at 5% level of significant.

Table 4.15: Overdispersion test results

Model Z − value p− value Dispersion estimates AIC
PoissonOut−migration 5.4564 2.429e−08 1216.875 2252676
PoissonIn−migration 4.3932 5.586e−06 1586.846 2569951

4.4.13 Negative Binomial (NB) model results

Since the Poisson model was overdispersed, the NB model was used to account

for overdispersion, in predicting migration. The results show that the p−value of

the deviance statistic for in-and out-migration in Table 4.16 is almost zero. This

shows the failure of the NB model in fitting the migration data.
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Table 4.16: Results of the Negative Binomial model

Independent variables
In-migration Out-migration

Estimate SE p-value Estimate SE p-value
(Intercept) 10.3 7.03e−01 < 2e−16 10.5 6.75e−01 < 2e−16

Dij −2.49e−03 5.08e−05 < 2e−16 −2.43e−03 4.96e−05 < 2e−16

obpi −4.5e−02 1.17e−02 8.42e−05 6.06e−02 9.45e−03 1.43e−10

obpj 5.84e−02 9.66e−02 1.47e−09 −3.66e−02 1.10e−02 8.84e−04

ocri −4.51e−02 6.29e−03 7.40e−13

ofpi −4.28e−02 5.02e−03 < 2e−16 −1.65e−03 3.74e−03 0.66
ofpj 4.23e−03 3.84e−03 0.27 −4.00e−02 4.83e−03 < 2e−16

poci 2.16e−07 1.30e−07 0.01 3.22e−07 1.26e−07 0.01
pocj 3.42e−07 1.29e−07 7.94e−03 1.18e−07 1.26e−07 0.35
poIi −2.27e−06 3.02e−07 5.97e−14 −1.18e−06 2.94e−07 6.28e−05

poIj −1.20e−06 3.02e−07 6.94e−05 −2.13e−06 2.95e−07 5.18e−13

empi 3.60e−02 3.12e−03 < 2e−16 −6.73e−03 2.53e−03 7.74e−03

empj −5.55e−04 2.67e−03 0.84 3.70e−03 2.60e−03 < 2e−16

GDPi −7.86e−13 1.37e−13 9.24e−09 −5.59e−13 1.36e−13 4.00e−05

GDPj −5.30e−13 1.39e−13 1.32e−04 −6.97e−13 1.27e−13 4.15e−08

CPIi −2.38e−01 3.65e−02 6.95e−11 1.49e−01 3.58e−02 3.04e−05

CPIj 1.64e−01 3.67e−02 8.45e−06 −2.29e−01 3.48e−02 4.36e−11

adi 1.54e−05 7.21e−07 < 2e−16 1.70e−05 7.11e−07 < 2e−16

adj 1.69e−05 7.31e−07 < 2e−16 1.48e−05 7.06e−07 < 2e−16

pwaj −1.93e−02 3.02e−03 1.69e−10

Inftrdwelli 5.16e−03 1.81e−03 4.35e−03 −9.48e−03 2.35e−03 5.44e−05

Inftrdwellj −6.59e−03 2.45e−03 7.18e−03

ocrj −4.27e−02 5.81e−03 1.99e−13

pwai −1.77e−02 2.89e−03 9.31e−10

degrees of freedom 2630 2631
Deviance 3023.50 3010.80
Theta 1.13 2.81e−02 1.18 2.97e−02

Goodness-of-fit 1.08e−07 2.68e−07

AIC 36804 36692

4.4.14 Gamma model results

From Figure 4.1 it is clear the distribution of the migration in the district munici-

palities is left skewed, in this section Gamma regression is used to model the data.

The results from this model are presented in Table 4.18.

From the results, the coefficients of the variables, distance (Dij), GDP and In-

dian/Asian population (poI) indicate that these were negatively related with mi-

gration. At 5% level of significance, there were only three variables that were

not significant in predicting in-migration, those variables were, ofpj , poci and
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empj . Similarly, for out-migration only two variables were not significant, ofpi

and pocj in Table 4.17. The variable distance had a negative coefficient -0.0025,

meaning that for each one unit increase in distance, the expected log count of the

in-migration decreased by 0.0025 holding all other predictors constant. This was

similar to the results of out-migration, the distance variable had the same coeffi-

cient.

A value of 1 for the scale parameter indicates that the Gamma model is equivalent

to the exponential distribution. The estimated value of the scale parameter for the

Gamma model that predict in and out-migration was 1.13 and 1.19. The 95% con-

fidence interval for the scale parameter of the models was (1.08, 1.18) and (1.13,

1.25), which does not contain 1. The hypothesis of an exponential distribution for

the migration data is rejected at the 5% level. The NB and Gamma model showed

the same patterns in terms of the parameter signs and the standard errors from

these models are the same.
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Table 4.17: Results of the Gamma model

Independent variables
In-migration Out-migration

Estimate SE p-value Estimate SE p-value
Intercept 10.2 7.00e−01 < 2e−16 10.4 6.73e−01 < 2e−16

Dij −2.47e−03 5.05e−05 < 2e−16 −2.40e−03 4.94e−05 < 2e−16

obpi −4.37e−02 1.16e−02 1.64e−04 6.16e−02 9.46e−03 7.52e−11

obpj 5.93e−02 9.65e−03 −3.45e−02 8.03e−10 1.10e−02 1.68e−03

ocri −4.37e−02 6.26e−03 2.98e−12

ofpi −4.18e−02 5.00e−03 < 2e−16 −8.97e−04 3.73e−03 0.81
ofpj 5.01e−03 3.83e−03 0.19 −3.90e−02 4.82e−03 5.62e−16

poci 2.11e−07 1.30e−07 0.10 3.13e−07 1.25e−07 0.01
pocj 3.35e−07 1.28e−07 9.12e−03 1.13e−07 1.26e−07 0.37
poIi −2.24e−06 3.01e−07 1.05e−13 −1.15e−06 2.94e−07 9.00e−05

poIj −1.17e−06 3.01e−07 1.01e−04 −2.10e−06 2.95e−07 1.04e−12

empi 3.58e−02 3.11e−03 < 2e−16 −6.20e−03 2.52e−03 0.01
empj −3.15e−05 2.66e−03 0.99 3.66e−02 2.59e−03 < 2e−16

GDPi −7.61e−13 1.36e−13 2.42e−08 −5.50e−13 1.36e−13 4.93e−05

GDPj −5.19e−13 1.38e−13 1.70e−04 −6.69e−13 1.27e−13 1.32e−07

CPIi −2.40e−01 3.63e−02 3.51e−11 1.46e−01 3.57e−02 4.49e−05

CPIj 1.61e−01 3.66e−02 1.11e−05 −2.31e−01 3.47e−02 2.62e−11

adi 1.53e−05 7.19e−07 < 2e−16 1.68e−05 7.10e−07 < 2e−16

adj 1.67e−05 7.30e−07 < 2e−16 1.47e−05 7.05e−07 < 2e−16

pwaj −1.93e−02 3.01e−03 1.54e−10

Inftrdwelli 5.25e−03 1.80e−03 3.59e−03 −9.58e−03 2.35e−03 4.44e−05

Inftrdwellj −6.74e−03 2.45e−03 5.91e−03

ocrj −4.13e−02 5.79e−03 8.96e−13

pwai −1.76e−02 2.88e−03 9.92e−10

degrees of freedom 2619 2620
Deviance 2655.70 2523.00
Scale 1.13 2.77e−02 1.19 2.92e−02

Goodness-of-fit (GOF) 0.30 0.91
AIC 36804 36637

4.4.15 Assessment of the models

This section compares the performance of these NB and Gamma models. The

results in Table 4.18 show that the Gamma model has lower AIC value compared

to the NB model, suggesting that the Gamma model performs better than the NB

model in predicting migration at the district municipalities of South Africa. The

p− value of the deviance suggests that the Gamma model fits the data reasonably

well compared to the NB model. The dispersion parameters for a Gamma models

that predicts in-migration and out-migration was 1
1.13

or 0.88, and 1
1.19

or 0.84,

respectively. The dispersion parameters were almost to one.
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Table 4.18: Diagnostics of the NB and Gamma model

Model AIC Goodness-of-fit Dispersion estimates Theta
NBOut−migration 36692 2.68205e−07 1.18
NBIn−migration 36859 1.078438e−07 1.13
GammaOut−migration 36637 0.91 0.84
GammaIn−migration 36804 0.30 0.88

4.4.16 Diagnostic plot of the Gamma models

Figure 4.19 and 4.21 indicates that the residuals plot against the fitted values,

these plots shows that there is no pattern or trend formed by the residual and this

suggests that there is no violation of the independence in the model. Also these

plots indicates that there is no need to transform the response variable. The plot

of the deviance residuals against the transform values (2 ln ŷi) in Figure 4.20 and

4.22 are centred around zero and the variance is constant. The plots also show the

presence of the outliers in the model. In addition the Figure 4.20 and Figure 4.22

suggests that the Gamma distribution with a log link is adequate in modelling the

migration data.

Figure 4.19: Gamma model (In-migration)
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Figure 4.20: Plot of the deviance residuals against 2ln(ŷi) : In-migration

Figure 4.21: Gamma model (Out-migration)

Figure 4.22: Plot of the deviance residuals against 2ln(ŷi) : Out-migration
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4.4.17 Diagnostic plot: Ord plot

In this section the results of the Ord plot discussed in Chapter 2 are presented.

From the Ord plot, Figure 4.23 the slope of the straight line was positive (1.95)

and the intercept was negative (-20.985). These results suggest that the migration

counts follows a logarithmic series distribution since the slope of the thicker line

is positive and the intercept is negative (see section 2.5.8).

Figure 4.23: Ord plot

4.5 Modelling Net-Internal Migration
This section focus on the results of the OLS and GWR models that were used to

study the relationship between net-internal migration in the 52 district municipal-

ities of South Africa.

4.5.1 Results of the OLS model

Net-Internal Migration was modelled using OLS, the beta coefficients and their

standard errors are captured. Only the significant predictors (at 5%) are shown in
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Table 4.19. Multicollinearity was not detected as all the V IF ’s were less than 6.

The overall fit (F test), suggests that the model was significant with p − value <

0.05. The R2 of the model was found to be 71%, this suggests that the model de-

scribe 71% of the observed variation in the net-internal migration. The variables,

nacstvs (Percentage of the households with no access to services, such as formal

dwelling, sanitation, tap water inside dwelling, electricity for lighting and refuse

removal), pow (White population) and, tre (Percentage of the households that are

renting) are positively related to net-internal migration. The coefficient of the pod

(Population density) variable was -63,82, this means that for each unit increase

in population density (pod) at district municipality, the net-internal migration de-

creases by 63,82. The relationship of net-internal migration with nacstvs suggests

a link between net-internal migration in the district municipalities and percentages

of the households with no access to services.

Table 4.19: Results of the Net-Internal Migration model (OLS)

Independent variables Estimate SE p-values VIF
intercept −1.46e05 2.99e04 1.22e−05

pod -63.8 18.3 1.07e−03 4.34
nacstvs 1.18e03 3.95e02 4.56e−03 3.53
pob −3.11e−02 1.36e−02 0.03 4.36
pow 4.48e−01 6.72e−02 2.91e−08 4.79
tre 5.13e03 1.07e03 1.66e−05 3.68
Fstatistic 26.25
p− value 1.958e−12

AICc 1235.682
R2 0.71

The error terms of the model shown in Figure 4.24 show no pattern with the fitted

values, but some of the data points deviates away from the normality probability

line, this indicates that some of the error terms were not normally distributed.
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Figure 4.24: Diagnostic plot of the Net-Internal Migration model

In Table 4.20 the Bonferonni method, detected a significant outlier correspond-

ing to observation number 8 from the data set and this observation was the net-

internal migration equal to -104906 in Nelson Mandela Metropolitan Municipality

(NMA).

Table 4.20: Results of the outlier identification

Outlier observation rstudent unadjusted p-value Bonferonni p
8 -3.087078 0.0034551 0.17967

4.5.2 Assessment of the Net-Internal Migration model (OLS)

The JB and Koenker’s Studentised Breusch-Pagan Test were performed and the

results of the tests are shown in Table 4.21.

The BP test was not significant at the 5% level, telling us that there was no evi-

dence to conclude that the beta parameters of the model were nonstationary. The

JB Test was just significant at 5% meaning that the regression model may be bi-

ased. The results from this model cannot be trusted, as suggested by Montgomery

et al (2006).
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Table 4.21: Results of the Net-Internal Migration model assessment

Model
Studentized Breusch-Pagan test Jarque Bera Test
BP p− value X2 p− value

ModelNet−InternalMigration 10.77 0.05613 6.3527 0.04174

4.5.3 Testing the assumptions of the linear model

The global validation of the linear model assumptions, gvlma in R was used

on the OLS model. It tested the fit, the shape of the distribution of the residu-

als, (skewness and kurtosis), the linearity and the homoscedasticity. The result

presented in Table 4.22 were at 5% level of significance. The general statistic

indicates that the linear model, almost does not fit the data. The gvlma suggests

that the residuals of the model are significantly skewed. However, the kurtosis

of the model does not differ from the normal distribution kurtosis. The linearity

assumption of the model was accepted based on the link function. Also, there was

no evidence to suggest that homoscedasticity was violated.

Table 4.22: Results of the model assumptions

Value p-value Decision
Global Stat 9.4964 0.04982 NOT satisfied!
Skewness 4.8061 0.02836 Assumptions NOT satisfied!
Kurtosis 1.5466 0.21364 Assumptions acceptable.
Link Function 0.1309 0.71754 Assumptions acceptable.
Heteroscedasticity 3.0129 0.08261 Assumptions acceptable.

The D-W test was used to test for independence of the error terms. The results in

Table 4.23, show a D-W value of 2.277278 or d =2.277278 and that the autocor-

relation is equal to -0.1784677 (ρ =-0.1784677). To check the significance of the

negative autocorrelation at 5%, the formal the test is expressed as,

H0 : ρ = 0
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Ha : ρ 6= 0

Based on the D −W test in Table 4.23, this study fails to reject H0 and conclude

that the errors are not correlated.

Table 4.23: Testing the significance of autocorrelation

Models lag Autocorrelation D −WStatistic p− value
Modelnet−internalmigration 1 -0.1784677 2.277278 0.47

Table 4.24 and 4.25 shows the results without the outlier. The BP test was signif-

icant at 5%, this means that there was evidence to suggest that the beta parameters

of the model vary across the space, and the JB Test was significant. The D-W test

indicates that the error terms are not correlated.

Table 4.24: Outlier removed: results of the Net-Internal Migration model assess-
ment

Model
Studentised Breusch-Pagan test Jarque Bera Test

BP p− value X2 p− value
Modelnet−internalmigration 14.1025 0.01497 6.8861 0.03197

Table 4.25: Outlier removed: Testing the significance of autocorrelation

Models lag Autocorrelation D −WStatistic p− value
Modelnet−internalmigration 1 -0.1828431 2.231612 0.534

4.5.4 Results for Geographically Weighted Regression (GWR)

model

This section presents the results of the GWR that was used to model net-internal

migration in district municipalities. Since the The Koenker-BP or Koenker’s Stu-

dentised Breusch-Pagan test suggested that there was evidence to suggest that the



4.5 Modelling Net-Internal Migration 94

beta parameters were nonstationary, since the p− value was less than to 5% after

an outlier was removed. The GWR model was fitted.

4.5.5 Checking multicollinearity

In linear models the results become biased when two or more variables indicates

the presence of multicollinearity. The GWR is a local model, it builds local re-

gressions for each feature in a data set. When the observations for a particular

explanatory variable cluster spatially, that signals the presence of multicollinear-

ity. The condition number was used to check for the presence of multicollinearity.

Figure 4.25 indicates that in all district municipalities and metros of South Africa,

there was no evidence to suggest that there was multicollinearity, because the re-

sults suggest that the condition number was above zero and less than 30 in all

district municipalities and metros.

Figure 4.25: Investigating possible spatial multicollinearity
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4.5.6 Testing for the misclassification of the GWR model

The spatial distribution of the residuals of the GWR was investigated using Moran’s

I, and the results of the test are shown in the Spatial results in Figure 4.26. The

Moran’s I, z − score and p− value in Table 4.26. The z − score of the Moran’s

I was -1.09, this means that the pattern of the residuals does not appear to be sig-

nificantly different from a random process, and the z-score was not statistically

significant, p − value =0.335980 > 0.05 (5%), this means that the GWR model

was well specified.

Table 4.26: Global Moran’s I Summary

Moran′s Index -0.094436
Expected Index -0.019608
V ariance 0.004714
z − score -1.089908
p− value 0.275754

Figure 4.26: Spatial Autocorrelation results
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4.5.7 Diagnostics statistics for GWR

Figure 4.27, indicates that there is not much variation in the values of the local is

R2 (R2
adj) statistics. TheR2 were lower in the Western Cape district municipalities

in the ranges of 66% and 68%, this indicates that the model predicts poorly in

those districts. The R2 were higher in the district municipalities of Limpopo, the

local R2 values were above 80%, this indicates that the GWR model predicts well

in those district municipalities.

Figure 4.27: Local R2

Table 4.27 shows the values of the diagnostic measures, Bandwidth, Residual

Squares, Effective number, Sigma 1, AICc, R2. The AICc value of the GWR was

1Effective Number reflects a trade off between the variance of the fitted values and the bias in
the coefficient estimates and is said to be related to the bandwidth.

Sigma this value is calculated as the square of the normalised residual sum of squares, where
the sum of squares is divided by the effective degree of freedom of residuals.
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1228.86, and it lower than 1235.682 the AICc value of the OLS model, and R2

of the GWR model is 0.76 and it was larger than 0.71, the R2 of the OLS model.

That means the GWR model is a better model than the OLS.

Table 4.27: Diagnostic results of the GWR

Statistic Values
Bandwidth 8.59
Residual Squares 35478709047.40
Effective Number 9.86
Sigma 29016.79
AICc 1228.86
R2 0.76

The Analysis of Variance (ANOV A) results in Table 4.28 compares the global

model to the GWR model. The ANOVA tests the null hypothesis that the GWR

model represents no improvement over a global model. This study observed a

reduction in the residual sum of squares when the GWR was used. It can be seen

from the F test the p − value < 5%. According to Brundson, Fotheringham

and Charlton (1999) the results in Table 4.28 suggests that the GWR model is a

significant improvement on the global model for predicting net-internal migration

in the district municipalities of South Africa. 2

Table 4.28: ANOVA results

Source SS DF MS F p-value
OLS Residuals 46295000000 6
GWR Improvement 10816290952.6 3.86 2802147915.18
GWR Residuals 35478709047.40 42.14 841924751.96 3.33 0.02

2The degrees of freedom (df) 3.86 and 42.14 in Table 4.28 are not expected to be integers.
Brundson et al (1999) said the F - distribution is well explained by any non-negative df parameter
and they also refer to those two quantities as effective degrees of freedom (df).
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4.5.8 Results of the Monte Carlo Significance Test

The results of the randomisation tests on each β coefficients is given in Table 4.29,

at the 5% level of significance. In most cases standard errors generated by the OLS

model exceeds
√
vj , only the beta parameter for the pow variable seems to be non

stationary. This suggests that the coefficient for the population size of the white

population (pow) vary in space. The Monte Carlo test should be equal or less

than 5% for a parameter to exhibit a significant spatial variation, and the results

from the test indicates that the beta parameter for population size for the white

population (pow) was the only variable with a parameter that vary significantly in

space.

These are useful results from the test because in the case of mapping the local esti-

mates this study focuses only on one variable (pow) for which the local estimates

are significantly non-stationary.

Table 4.29: Results for the spatial variability of coefficients

V ariables
√
vj SE Monte Carlo significance test (p− value)

intercept 7533.110 29850 0.73
pod 6.900 18.28 0.53
nacstvs 104.663 394.7 0.66
pob 0.012 0.01356 0.05
pow 0.080 0.06719 0.01
tre 374.625 1067 0.54

4.5.9 Local Regression coefficient (pow)

Figure 4.28 indicates that, through out the intervals the coefficient of the white

population was positive, and this shows a positive relationship between the white

population and the net-internal migration in the district municipalities of South

Africa. The beta parameters are larger in the district municipalities of Limpopo,
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this means that a unit increase in the population size of the white population in-

crease the net-internal migration.

Figure 4.28: GWR White population (pow) Coefficient

4.5.10 Cluster Analysis (CA) results

In this section cluster analysis results are presented. The data set consists of the

explanatory variables in Table 4.19 which were standardised before estimating the

number of clusters. The average silhouette width was used to estimate the number

of clusters formed by the data set.

The silhouette width method estimated 2 clusters from the data set (excluding the

net-internal migration). Figure 4.29 and Figure 4.30, show that, cluster 1 was

the largest cluster, with 47 observations, and cluster 2 with 5 observations. The

average silhouette width was 0.66. According to Watts, Toth, Murphy and Lovas
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(2001) this value means that a reasonable structure has been identified, see Figure

4.29. The k-means method was used to form the clusters. The results from the

cluster means in Table 4.30 indicates that cluster 2 formed by EKU, JHB, TSH,

ETH and CPT, and the names of the district municipalities that form clusters are

shown in a R code in Appendix E. This cluster has positive net-internal migra-

tion. Furthermore cluster 2 has the highest, Gross Domestic Product, Average

household income, population density, percentage of households that were rent-

ing dwellings, and the lowest illiteracy rate. This cluster represents developed

metropolitan municipalities. Cluster 1 mostly consists of district municipalities

and this cluster has negative net-internal migration. This cluster has the high-

est, unemployment rate, illiteracy rate and percentage of the households with no

access to services. Cluster 1 represents underdeveloped district municipalities.

Table 4.30: Cluster means

Cluster pod nacstvs pob pow tre Net− InternalMigration ump avh GDP illitrt
1 -0.28 0.11 -0.25 -0.3 -0.18 -10562.09 32.51 72120.62 296325425532 25.27
2 2.67 -1.05 2.38 2.77 1.69 99283.60 26.42 153274.40 780400000000 10.26

Figure 4.29: Silhouette width
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Figure 4.30: Cluster plot

4.5.11 Summary

The analysis indicates that Tshwane, Ekurhuleni and City of Cape Town have the

highest net-internal migration. While, Nelson Mandela Metropolitan, O.R Tambo,

and Capricorn district municipalities, they have the highest negative net-internal

migration.

This chapter presented the results of the following models, OLS, Poisson, NB,

Gamma and GWR models. The results from the models, suggest that the eco-

nomic, demographics, tenure status were significant push and pull factors in the

district municipalities of South Africa. The Poisson and NB model failed to fit

the data while Gamma model fitted the migration data. The OLS model failed

to satisfy some of the assumptions of the linear model and that suggest that the

predictions of this model may not be reliable, especially in the metropolitan mu-

nicipalities. The GWR model performed well in predicting the net-internal mi-

gration in the district municipalities of South Africa compared to the OLS model.
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The results from the GWR model indicates that only the parameter for the white

population vary in space. The results of the GWR suggest that we cannot assume

that the beta parameter is stationary for the white population size when modelling

the net-internal migration at the district municipalities of South Africa.

The results from the cluster analysis revealed that there are two clusters estimated

by silhoutte width method. The k-means is used to form clusters. The results

suggest that cluster 1 was the largest cluster with 47 observations and cluster 2

with 5 observations. Cluster 1 has negative net-internal migration. Cluster 2 has

positive net-internal migration and this cluster that is largely represented by met-

ros (Ekurhuleni, Johannesburg, Tshwane, EThekwini and City of Cape Town) is

more developed than cluster 1.



Chapter 5

Conclusion and Recommendation

5.1 Introduction

This study demonstrates the use of the statistical models to model migration data

using 2011 Census data, which was conducted by Statistics South Africa (Stats

SA). The models that were used for this study are the Gravity, Extended Gravity,

Poisson, Negative Binomial and Geographically Weighted regression models. The

Gravity, Extended Gravity, Poisson, and NB are known as the global models. The

GWR model is known as a local model. This chapter presents the summary and

discussion, recommendation and conclusion of the study.

5.2 Summary and discussion

These models are widely used in many studies as already indicated in the litera-

ture review. This study suggests that push and pull factors, as described by eco-
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nomic, demographics, living conditions variables were important in explaining

in-and out-migration in the district municipalities of South Africa. Furthermore

the significance of these variables shows the economic and social disparities in

the district municipalities. These observation agrees with the findings of other

researchers as discussed in the literature review.

The reset test confirmed that the linear relationship of the Extended Gravity re-

gression that was used by Bouare (2000-2001), and Fan (2005) to model migra-

tion in the district municipalities was inadequate. It was observed that nonlinear

terms such as, the quadratic terms were found significant.

Metros like Tshwane, Ekurhuleni, and City of Cape Town had the highest net-

internal migration. The results from the cluster analysis in Table 4.30 show that

these metros are from the developed provinces with the highestGDP values, low-

est illiteracy rate and excellent employment opportunities in South Africa. This

observation seems to support the claim that, migrants, migrate to places where

there are high levels of employment rates or low levels of unemployment rates as

well as higher GDP values (Congdon, 1992; Faggian and Royuela, 2010).

It was observed that many migrants from Capricorn are migrating to Tshwane.

According to 2011 Census, close to (84.9%) 85% of the population speak Se-

pedi as their first language, and close (19.9%) 20% of the population in Tshwane

speak Sepedi as their first language, this makes Sepedi a popular official language

in Tshwane. This observation could explains why the migrants from Capricorn

chose to migrate to Tshwane. Flowerdew and Amrhein (1989), motivates the ne-

cessity of including the language variable in a model, by saying language could

be linked with cultural reasons or social networks, and migration was more likely
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to take places where the same language is spoken. Large social networks in an

area contribute to higher migration rates. The findings of this research show that

language is an important variable, in deciding which area to migrate to. This can

be seen as the rural to urban migration, because, the population from Capricorn

largely resides in rural areas, its municipalities are mostly rural municipalities,

while Tshwane is 100 % urban. The inequalities between these municipalities

were high, for instance, from 2011 Census, the illiteracy rate, in Capricorn and

Tshwane, was 20.8% and 10.1%, respectively it is more than twice the illiteracy

rate of Tshwane. The average annual household incomes, in Tshwane and Capri-

corn, were R182867.00 and R69233, respectively. These results, suggest there are

inequalities, between rural and urban district municipalities. Although these vari-

ables, illiteracy rate, average annual household income and other variables were

not significant in explaining in-and out-migration. Faggian and Royuela (2010)

noted that, variables with non-significant coefficients do not mean that they play

no role in migration, they explained that, the territorial distribution of variables

might be relatively homogeneous over territory and this observation reduces the

significance of these variables as factors for moving decisions. Furthermore, in

this study only the provincial GDP and CPI (for some district municipalities) were

used. Since this information was not available at the district level.

From paragraph (4) above, it was observed that, the migrants from Capricorn, O.R

Tambo district municipality, and Nelson Mandela Metropolitan, tend to migrate to

areas close to their places of origin see, Figure 4.16, 4.14 and 4.15. However mi-

grants proceeding long distances generally target large commercial and industrial

centers (Ravenstein,1885), Johannesburg migrants join the list of the municipali-

ties with the highest migrants in the City of Cape Town. It is clear from the map,
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distance wise, none of these municipalities are close to each other, this could be

the influence of the employment (emp) opportunities which act as pull and push

factors. The variable distance plays a very critical role in predicting movements

within the district municipalities of South Africa, this variable was significant in

all the models. Also the variable distance is associated with cost of movement.

The distance, between the population in the origin (popi) and population in the

destination have the expected signs in predicting in and out migration from the

results of the Gravity model, similar findings were found by (Fan, 2005). The

Nonlinear model did well in terms of explaining the variances accounted for by

both in-and out-migration in the district municipalities of South Africa, this was

confirmed by the higher R2 (>75%), the model were the best among the other

model that were observed from the lower AIC. The results from the Nonlinear

models suggests that the distance effect increases in-migration as one moves to

around 5.05 km, then after it is expected to decrease. Furthermore, the employ-

ment rate effect at the destination decreases out-migration at 16.44% and after that

in-migration increases.

Although the Nonlinear models did well in explain the variation of the response

variable, the models failed to satisfy the assumptions of a linear model and also the

models were found to be biased, by the Jarque-Bera Test (JB-Test), this suggests

that the residuals of the OLS models were not normally distributed.

This study showed that there were outliers in the best performing models (model

with quadratic terms) that were fitted for in- and out-migration, these outliers

affected diagnostic measures, R2 and AIC, i.e, after removing the outliers, R2

increased and AIC decreased. There was an outlier from the OLS model that was
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used to model net-internal migration in the district municipalities of South Africa.

The outlier (-104906) came from Nelson Mandela Metropolitan, this indicates

that NMA lost 104906 through out-migration. This was unusual, because NMA is

coastal area and coastal areas such as Port Elizabeth Waterfronts and NMB South

coast are suitable for tourism. Community services, trade and manufacturing sec-

tors are the sectors that create the most employment opportunities in NMA (Spies,

2013). However, from 2001 Census to 2011 Census, in NMA unemployment rate

increased from 28.2% to 36.6%, an increased in unemployment rate could be the

one of the factors that push the population out of this metro.

The application of the OLS in modelling the count response variable is discour-

aged by many researchers as indicated in the literature review, count model like,

Poisson, NB and Gamma model are preferable. The study used the Poisson, NB

and Gamma model. The results from the Poisson model indicated that the explana-

tory variables were highly significant, this study proceeded to test the assumptions

of the model. From the dispersion test, the standard errors of the Poisson model

cannot be trusted, because the model was overdispersed and the it failed to fit the

data. Since the Poisson model was overdispersed, the NB model was used. The

NB model accounts for dispersion and the Poisson model failed to capture, but in

this study NB model did not fit the data.

Figure 4.1, showed that the distribution of the migration numbers was left skewed,

this suggested, the use of the Gamma distribution to model the data. The results

of the goodness-of-fit, suggest that the model was significant at 5% level.

The net-internal migration was explored in two steps. In the first part the OLS
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model (global model) was used, and the second part we used the GWR model

also known as a local model. The study used predictors, such percentage of

the households that are renting (tre), white population (pow), population den-

sity (pod), black population (pob), and no access to services (nacstvs) were used

in these models. These predictors were all significant at 5% with no presence of

multicollinearity (all the V IF ′ s for the predictors were less than 6). The OLS

model was significant, and with the good R2 (71.4%). However the model failed

to satisfy the assumptions of the linear model and also the model was proven to

be biased by the JB-Test. The Koenker-BP Test was not significant at 5%, this

implied there was no evidence to model the data using GWR, but this study pro-

ceeded in using the GWR model.

The diagnostics of the GWR model such as AICc and R2 suggest that GWR

model performed better than the OLS in predicting net-internal migration in the

district municipalities of South Africa. The Moran’s I test on the residuals of the

GWR model, showed a random spatial pattern and these results suggested that

the GWR model is well specified. The GWR model predict poor in the district

municipalities of Western Cape, because lower R2 ≈ 67% was observed. How-

ever the model predict well in the district municipalities of Limpopo, with higher

R2(> 80%).

The study tested the stationarity of each of the beta parameters in a GWR by using

a method describe by (Brunsdon, et al, 1998). The results from the test at 5%

level suggested that only the beta parameters for white population (pow) is non

stationary over space. This was surprising because the Koenker-BP Test was not

significant at 5%, the test suggest that there was no evidence of non-stationarity
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of the estimated parameters or the relationship does not vary in the geographical

space, this could be the weakness of the global test, in a sense that this test does

not identify the individual parameters that are non-stationary or stationary.

5.3 Conclusion
The results of this study confirmed that is not advisable to use the gravity ap-

proach in modelling the migration flow (count response). Researchers are encour-

age to use models like Poisson, NB, Gamma, etc. These models are designed to

model count response variables. In cases where there is overdispersion, the Pois-

son model may not be the best alternative model, while the NB that accounts for

overdispersion is the recommended model. The goodness-of-fit results however,

show that the NB failed to model migration. It is suspected that this model fails

to account for metros which tend to have greater migration figures. The Gamma

model on the other hand passed the goodness-of-fit and it explains migration well.

The OLS and GWR were also used to model the net internal migration at the

district level. The results shows that the GWR is superior to OLS in predicting

the net-internal migration at the district level. The Monte Carlo significance tests

show that the parameter estimates of the size of the white population is not the

same across the district municipalities of South Africa. We conclude that the

relationship between net internal migration and size of the white population is

different across the district municipalities of South Africa.

The results from the models, suggest that, the tenure status, such as households

that owned but not yet paid off (obp), owned and fully paid off (ofp), occupied

rent free (ocr) and were renting dwellings (tre), economic variables such as Gross
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Domestic Product (GDP ), and Consumer Price Index (CPI), living conditions

such as access to tap water (pwa), and no access to services, and the demograph-

ics, race, population density (pod), and adult population (ad), were important

driving forces of internal migration in South Africa. These findings suggest that

economics, demographics and living conditions are the major drivers for individu-

als to migrate from one district municipality to another. From a policy perspective,

we believe that the results of this study hint a useful information on what factors

influence internal migration and ultimately the population distribution of individ-

uals in the district municipalities of South Africa.

5.4 Recommendation
This study, recommends that researchers should properly access the fit of models.

They need to check for the model assumptions and for transparency the results

must be reported. They are many publicised models that are fitted with higher R2,

but nothing is said about whether those models are biased or not. The results of

the OLS (Gravity model), cannot be trusted because the model assumptions were

violated, such as, normality. It is important to use distributions that were designed

to model discrete observations.

This study revealed that, push and pull factors such as, employment, GDP, Ac-

cess to water, tenure status, type of dwelling (Informal or traditional dwelling),

distance between the districts, demographic variables were found to be related in

explaining internal migration in South Africa.

The push and pull factors in this study hint the presence of inequalities between the

district municipalities of South Africa, and these inequalities need to be studied
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and outlined. Future studies should investigate such variables as proximity to

malls, access to newer public transport like Rea Vaya and Gautrain etc. Instead

of using proxy variables future studies should use the correct municipality level

predictors to reveal hidden dynamics these variables, and those variables may play

a huge role in migration studies.

This study models migration at the district level and, Stats SA have the migration

figures (Census 2011) up to Local municipalities, it is recommended that future

researchers explore migration patterns and modelling at this level. We suggest the

use of the offset variable in count models. The results from the Ord plot in Figure

4.23 recommend the use of the logarithmic series to model the migration data.

Also, it is important to test whether the explanatory variables vary over space, if

that is the case, then it is recommended that models like GWR, Geographically

Weighted Poisson (GWP), etc, that account for variation in space should be inves-

tigated with other predictors.
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Appendix A

Net-Internal Migration by Province

Table A.1: Net-Internal Migration by Province

Provinces Net Internal migration_2001 Net Internal migration_2011
Western Cape 182009 189950
Eastern Cape -253685 -315526
Northern Cape -6616 -14115
Free State -44713 -58780
KwaZulu-Natal -78355 -107340
North West -24021 30772
Gauteng 418108 550753
Mpumalanga -29804 -21108
Limpopo -162923 -254606
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Table B.1: Net-Internal Migration in the district municipalities

CODE Names Net-Internal Migration Province
TSH City of Tshwane Metropolitan Municipality 232837 Gauteng
DC21 Ugu District Municipality 4656 KwaZulu-Natal
EKU Ekurhuleni Metropolian Municipality 180471 Gauteng
DC16 Xhariep District Municipality 3725 Free State
CPT City of Cape Town Metropolitan Municipality 79355 Western Cape
DC28 Uthungulu District Municipality 1932 KwaZulu-Natal
DC48 West Rand District Municipality 69672 Gauteng
DC5 Central Karoo District Municipality 811 Western Cape
DC31 Nkangala District Municipality 69127 Mpumalanga
DC45 John Taolo Gaetsewe District Municipality 503 Northern Cape
DC37 Bojanala District Municipality 46979 North West
DC6 Namakwa District Municipality -1348 Northern Cape
JHB City of Johannesburg Metropolian Municipality 39274 Gauteng
DC43 Sisonke District Municipality -1405 KwaZulu-Natal
DC2 Cape Winelands District Municipality 32791 Western Cape
DC7 Pixley ka Seme District Municipality -4842 Northern Cape
DC22 Umgungundlovu District Municipality 31369 KwaZulu-Natal
DC19 Thabo Mofutsanyane Cacadu District Municipality -7663 Free State
DC40 Dr Kenneth Kaunda District Municipality 28535 North West
DC23 Uthukela District Municipality -9270 KwaZulu-Natal
DC4 Eden District Municipality 27336 Western Cape
DC24 Umzinyathi District Municipality -14263 KwaZulu-Natal
DC1 West Coast District Municipality 26683 Western Cape
DC9 Frances Baard District Municipality -14836 Northern Cape
DC36 Waterberg District Municipality 24650 Limpopo
DC39 Dr Ruth Segomotsi Mompati District Municipality -15204 North West
DC30 Gert Sibande District Municipality 22993 Mpumalanga
BUF Buffalo City Metropolitan Municipality -15735 Eastern Cape
DC3 Overberg District Municipality 22206 Western Cape
DC38 Ngaka Modiri Molema District Municipality -18091 North West
DC10 Cacadu District Municipality 18162 Eastern Cape
DC14 Ukhahlamba District Municipality -21159 Eastern Cape
DC8 Siyanda District Municipality 13602 Northern Cape
DC13 Chris Hani District Municipality -28182 Eastern Cape
DC20 Fezile Dabi District Municipality 11152 Free State
DC42 Sedibeng District Municipality -28550 Gauteng
DC29 iLembe District Municipality 10051 KwaZulu-Natal
DC47 Greater Sekhukhune District Municipality -33377 Limpopo
MAN Mangaung Metropolian Municipality 9238 Free State
ETH eThekwini Metropolitan Municipality -35519 KwaZulu-Natal
DC25 Amajuba District Municipality 5847 KwaZulu-Natal
DC18 Lejweleputswa District Municipality -70695 Free State
DC26 Zululand District Municipality -36136 KwaZulu-Natal
DC34 Vhembe District Municipality -74779 Limpopo
DC44 Alfred Nzo District Municipality -39196 Eastern Cape
DC32 Ehlanzeni District Municipality -84587 Mpumalanga
DC12 Amathole District Municipality -44965 Eastern Cape
DC35 Capricorn District Municipality -91939 Limpopo
DC33 Mopani District Municipality -53012 Limpopo
DC15 O.R.Tambo District Municipality -103114 Eastern Cape
DC27 Umkhanyakude District Municipality -61184 KwaZulu-Natal
NMA Nelson Mandela Bay Metropolitan -104906 Eastern Cape
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Descriptive

Table C.1: Descriptive statistics

Variables mean max median std.dev min skewness kurtosis
Net −
InternalMigration

0 232837.0 -422.50 59146.12 -104906.0 1.38 4.14

pob 788479.50 3389278.0 646442.50 684131.99 7904.0 1.69 3.28
pow 88208.42 586495.0 35493.50 144687.70 1898.0 2.57 5.65
pod 215.16 2695.9 48.15 506.16 0.9 3.32 11.02
nacstvs 33.80 77.7 30.65 21.14 7.3 0.32 -1.40
tre 20.5 41.2 20.80 7.99 8.3 0.62 -0.06
ump 31.93 50.90 32.80 7.80 14.10 -0.22 -0.20
avh 79923.87 183263 74164 33097.97 37148 1.30 1.83
illitrt 23.82 39.50 23.85 7.80 8.90 -0.12 -0.84
GDP 3.428711e+11 1.010000e+12 2.19000e+11 2.557081e+11 6.5259e+10 1.51 1.66
Dij 806.7 2054.0 757.0 408.57 44.0 0.48 -0.39
obpi/j 9.33 20.90 8.90 3.8 3.50 0.85 0.49
ocri/j 20.62 36.3 19.50 5.09 12.80 0.73 0.42
ofpi/j 45.69 63.60 47.25 8.86 23.80 -0.51 -0.06
poci/j 88757.73 63.60 47.25 230728.10 1153 5.36 31.25
poIi/j 24748.58 573334.0 3178.5 83446.37 300 5.69 33.46
empi/j 33.75 53.30 34.50 11.56 16.0 0.05 -1.14
GDPi/j 3428711e+05 101e+10 219e+09 2532852e+05 65259e+06 1.55 1.84
CPIi/j 6.38 7.80 6.10 0.64 5.30 0.77 -0.32
adi/j 53192.12 207487 40462.5 42801.64 4375.0 1.90 3.53
pwai/j 88.87 99.40 95.65 12.92 49.10 -1.48 1.44
Inftrdwelli/j 22.17 57.90 18.10 12.93 2.30 1.15 0.89
popi/j 9.955877e+05 4.434827e+06 7.513155e+05 9.187444e+05 7.1011e+04 2.19 4.38
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Table C.2: Descriptive statistics of the log variables

Variables mean max median std.dev min skewness kurtosis
log(Dij) 6.54 7.63 6.63 0.60 3.78 -0.83 0.66
log(obpi/j) 2.15 3.04 2.19 0.41 1.25 -0.05 -0.63
log(ocri/j) 3.00 3.59 2.97 0.24 2.55 0.13 -0.45
log(ofpi/j) 3.80 4.15 3.86 0.22 3.17 -1.08 1.04
log(poci/j) 9.90 14.28 9.57 1.69 7.05 0.39 -0.54
log(poIi/j) 8.46 13.26 8.06 1.54 5.70 0.90 0.72
log(empi/j) 3.45 3.98 3.53 0.38 2.77 -0.39 -1.04
log(GDPi/j) 26.32 27.64 26.11 0.71 24.90 -0.10 -0.15
log(CPIi/j) 1.85 2.05 1.81 0.10 1.67 0.61 -0.50
log(adi/j) 10.60 12.24 10.61 0.77 8.38 -0.32 0.49
log(pwai/j) 4.47 4.60 4.56 0.17 3.89 -1.85 3.01
log(Inftrdwelli/j) 2.93 4.06 2.90 0.62 0.83 -0.64 1.35
log(popi/j) 13.48 15.3 13.53 0.83 11.17 -0.25 0.67
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The R code

#import the migration data set

data =read.csv("H:/data_sets/data_c.csv",header =TRUE,sep =",")

data.out =data[c(8,12,15,16,18,19,20,25,26,27,28,33,34,37

,38 ,47,48, 49,50, 53,54,57,89)]

#Preparing for gravity model: Out-migrtion

This program replace the zero’s by 0.1, because the log(0) is

undefined.

d =dim(data.out)

for(j in 1:d[1]){

if(data.out[j,1]==0){
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data.out[j,1] =0.1 replace 0.1 in the place of zero,

} else{

data.out[j,1] =data.out[j,1]

otherwise, leave the number.

}

}

#Fitting a gravity model

gravity model= lm(log(data.out[,1])~log(D_ij)

+log(pop_{i})

+log(pop_{j}), data =data.out)

summary(gravity model)

extended.out =lm(log(data.out[,1])~.,

data=log(data.out[,-c(1,14,15)]))

summary(extended.out)

#Centering variable

The following program is centering all the independent variable

preparing for fitting a modified gravity model

with nonlinear term.

#The purpose of cenetering variables was to

minimise multicollinearity:

data_out =data.out[,-c(14,15)]
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c_varb =data_out[,-1]

c=dim(c_varb)

for(k in 1:c[2]){

c_varb[,k] =scale(log(c_varb[,k]),scale =F)

}

gr_out =lm(log(data_cvar[,1])~.,data =data_cvar[,-1])

summary(gr_out)

gr_out2sq =update(gr_out,~.+I(D_ij^2)+I(obpi^2)

+I(obpj^2)

+I(ocrj^2)+I(ofpi^2)+I(ofpj^2)+I(poci^2)+I(pocj^2)

+I(poIi^2)+I(poIj^2)+I(empi^2)+I(empj^2)+I(GDP_i^2)

+I(GDP_j^2)+I(CPI_i^2)+I(CPI_j^2)+I(adi^2)+I(adj^2)

+I(pwai ^2)+I(Inftrdwelli^2),data =data_cvar[,-1])

summary(gr_out2sq)

#Preparing for gravity model: In-migrtion

data_in2 =cbind(data.in[,1],out[c(2,14,15)])



Appendices 132

min(data_in2[,1])

d2 =dim(data_in2)

for(j in 1:d2[1]){

if(data_in2[j,1]==0){

data_in2[j,1] =0.1

} else{

data_in2[j,1] =data_in2[j,1]

}

}

gravity_in =lm(log(data_in2[,1])~log(D_ij)+log(pop_i)

+log(pop_j), data =data_in2)

summary(gravity_in)

c_ivarb =data_in[,-c(1)] Excluding the column with

in-migration entries,

ci=dim(c_ivarb)

for(h in 1:ci[2]){

c_ivarb[,h] =scale(log(c_ivarb[,h]),scale =F)

}

gr_in =lm(log(data_icvar[,1])~.,data =data_icvar[,-1])

summary(gr_in)

in2 =update(gr_in,~.+I(D_ij^2)+I(obpi^2)
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+I(obpj^2)+I(ocri^2)+I(ofpi^2)+I(ofpj^2)+I(poci^2)

+I(pocj^2)+I(poIi^2)+I(poIj^2)+I(empi^2)+I(empj^2)

+I(GDP_i^2)+I(GDP_j^2)+I(CPI_i^2)+I(CPI_j^2)

+I(adi^2)+I(adj^2)+I(pwaj^2)

+I(Inftrdwell_i^2)+I(Inftrdwell_j^2))

#Fitting the Poisson, Negative Binomial and Gamma model

library(MASS)

poismodel =glm(out[,1]~.,family =poisson,data =out))

nbmodel =glm.nb(out[,1]~.,data =out[,-c(1)])

#Deleting rows with zero entries:

row_sub = apply(out3, 1, function(row) all(row !=0 ))

gammodelt =glm(out3[,1]~.,family=Gamma(log),data =out3[,-1])

summary(gammodel, dispersion =gamma.dispersion(gam_out))

#The same models (Poisson, NB and Gamma) were

used for modelling in-migration.

#Modelling Net-internal migration
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dc_net =read.csv("H:/net.csv",header =TRUE,sep =",")

netmig =dc_net[c(4,15,17,19,22,23)]

modnmig<-lm(Net_internal migration~pod+nacstvs+pob

+pow+tre,

data = netmig)

summary(modnmig)

anova(modnmig)

xy =dc_net[c(2,3)]

xy.sp =SpatialPoints(xy)

xy.cc =coordinates(xy.sp)

#Converting the Net-migratio data into Spatial data frame using

the "sp" package

xy.spdf =SpatialPointsDataFrame(xy.sp,netmig)

df1 =data.frame(xy,netmig)

coordinates(df1)=c("x_coor","y_coor" )

#Performing the Monte Carlo Significance Test
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DM<-gw.dist(dp.locat=coordinates(df1))

bw<-bw.gwr(Net_migration~pod+nacstvs

+pob+pow+tre

,data=df1,dMat=DM, kernel="gaussian")

res.mont1<-montecarlo.gwr(Net_migration~pod

+nacstvs+pob+pow+tre, data = df1,dMat=DM, nsim=99,

kernel="gaussian", adaptive=FALSE, bw=6)

#Cluster Analysis

The number of clusters were estimated by following R code.

datamgr <-read.csv("C:/Users/xolanij/Desktop/

data_net2.csv", sep=";", dec=",")

netcl =datamgr[c(1,4,6,7,8,15,17,18,19,20,22,23)]

netclus =scale(netcl[,-c(1,2,3,4,5,8,10)])

pamk.best <- pamk(netclus)
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cat("number of clusters estimated by

optimum average silhouette width:", pamk.best$nc, "\n")

number of clusters estimated by optimum average

silhouette width: 2

#Print the name of the district municipalities that form the clusters.

clusmeancode =cbind(netclus,netcl[c(1)])

for (i in 1:2){

print(paste("District municipalities in Cluster ",i))

print(clusmeancode$CODE[fitkms$cluster==i])

print (" ")

}
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Sample results

resettest(extended_in , power=2, type="regressor")

RESET test

data: extended_in

RESET = 9.6884, df1 = 21, df2 = 2609, p-value < 2.2e-16

RESET test

data: extended_out

RESET = 10.5934, df1 = 22, df2 = 2607, p-value < 2.2e-16

#Results of the Monte Carlo

bw<-bw.gwr(Net_migration~pod+nacstvs+pob+pow+tre,
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data=df1,dMat=DM, kernel="gaussian")

Fixed bandwidth: 9.939891 CV score: 67246993225

Fixed bandwidth: 6.144419 CV score: 56758085760

Fixed bandwidth: 3.798688 CV score: 80700391253

Fixed bandwidth: 7.59416 CV score: 61456048023

Fixed bandwidth: 5.248429 CV score: 55551501230

Fixed bandwidth: 4.694678 CV score: 58472049266

Fixed bandwidth: 5.590667 CV score: 55553465354

Fixed bandwidth: 5.036915 CV score: 56100255724

Fixed bandwidth: 5.379153 CV score: 55448157468

Fixed bandwidth: 5.459944 CV score: 55453723699

Fixed bandwidth: 5.329221 CV score: 55469902081

Fixed bandwidth: 5.410012 CV score: 55444633740

Fixed bandwidth: 5.429084 CV score: 55446014667

Fixed bandwidth: 5.398225 CV score: 55445123384

Fixed bandwidth: 5.417297 CV score: 55444847909

Fixed bandwidth: 5.40551 CV score: 55444697873

Fixed bandwidth: 5.412795 CV score: 55444669369

Fixed bandwidth: 5.408292 CV score: 55444640419

Fixed bandwidth: 5.411075 CV score: 55444640586

Fixed bandwidth: 5.409355 CV score: 55444633698

Fixed bandwidth: 5.408949 CV score: 55444635274

Fixed bandwidth: 5.409606 CV score: 55444633336

Fixed bandwidth: 5.409761 CV score: 55444633346

Fixed bandwidth: 5.40951 CV score: 55444633419
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Fixed bandwidth: 5.409665 CV score: 55444633319

Fixed bandwidth: 5.409702 CV score: 55444633321

#Tests based on the Monte Carlo significance test

p-value

(Intercept) 0.73

pod 0.53

nacstvs 0.66

pob 0.05

pow 0.01

tre 0.54

#Cluster Analysis: Printing the district municipalities that

form clusters

[1] "District municipalities in Cluster 1"

[1] DC10 DC12 DC13 DC14 DC15 DC44 BUF NMA DC16 DC18 DC19

[12] DC20 MAN DC42 DC48 DC21 DC22 DC23 DC24 DC27 DC28 DC43

[23] DC25 DC26 DC29 DC33 DC34 DC35 DC36 DC47 DC30 DC31 DC32

[34] DC37 DC38 DC39 DC40 DC6 DC7 DC8 DC9 DC45 DC1 DC2
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[45] DC3 DC4 DC5

[1] "District municipalities in Cluster 2"

[1] EKU JHB TSH ETH CPT


